

Example of treatment structure.

Ex.1.12. Simple fungicide

- treatment: 3 doses of fungicide
full spray / half / no → one factor, 3 levels
 2 treatments / 1 control

Ex.1.13. Fungicide factorial

- fungicide could be sprayed

early / mid-season / late / any combinations of them

<u>Yes</u> +	<u>Yes</u> +	<u>Yes</u> +
<u>no</u> -	<u>no</u> -	<u>no</u> -

early	mid	late
+	+	+
+	+	-
+	-	+
-	+	+
+	-	-
-	+	-
-	-	+
-	-	-

full factorial design ← 3 factors, each 2 levels

	spray midseason		no mid spray-season		
	spray late	no late spray	spray late	no late spray	
spray early	✓	✓	✓	✓	
no early spray	✓	✓	✓	✓	

1-10

Ex.1.14. Fungicide factorial plus control

- doses: full spray / half / no
- time: early / mid / late
- Spray is applied only once.
- Q: how many treatments? what's their structure?

2 factors
each 3 levels
9 treatments

7 treatments

full spray
half spray
no spray

	early	mid-season	late
full spray	✓	✓	✓
half spray	✓	✓	✓
no spray	✓	✓	✓

not make sense

	early	mid-season	late	n/a
full spray	✓	✓	✓	
half spray	✓	✓	✓	
no spray				✓

one factor
2 levels

one factor, 7 levels

6 treatments / 1 control

1 control

1-11

Ex 1.15. Oilseed rape

- expt on the control of disease
- compare 4 "new" chemicals, A, B, C, D with
 - { (1) no treatment
 - (2) standard chemical X
- each of the new chemicals could be applied early/late
- Q: how many treatments?

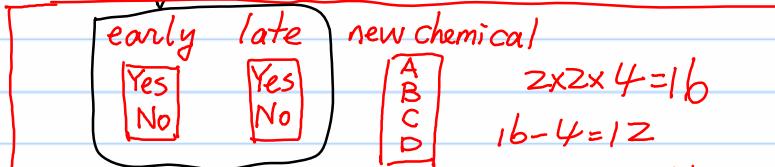
Q: What's their structure?

one factor, 2 levels

none

A
B
C
D
X

one factor, 4 levels


	early	late	both	n/a
none	✓			✓
A	✓	✓		
B	✓	✓		
C	✓	✓		
D	✓	✓		
X			✓	

one control

10 treatments

8 of them: full factorial

2 of them: control

Q: What if new chemicals could be applied late/early/any combination of them?

1-12

notation for treatment

- a treatment: lower-case Latin letters, such as i, j, ...
- whole set of treatments: \mathcal{T}
- # of treatments = $|\mathcal{T}| = t$

notation for plots

- a plot: lower-case Greek letters such as $\alpha, \beta, \gamma, \omega$
- whole set of plots: Ω
- # of plots = $|\Omega| = N$

Def: treatment structure: meaningful ways of dividing the set \mathcal{T} of treatments

Def: plot structure: meaningful way of dividing the set Ω of plots

1-13

Treatment structure

- Unstructured
- Several new treatments plus control [Ex 1.12]
- All combinations of two (three, ...) factors [Ex 1.8, 1.10, 1.13]
- All combinations of two (three, ...) factors, plus control [Ex 1.14]
- Increasing doses of a quantitative factor

1-14

Plot structure

- Unstructured
- Experimental units containing observational units [Ex 1.2]
- Blocks: dividing the experimental units into homogeneous blocks [Ex 1.9: housewives]
- Blocks containing subblocks containing plots [Ex 1.5]
- Blocks containing experimental units containing observational units
- Two (several) different sorts of blocks, neither containing the other [Ex 1.7]

Q: What's the difference between factors & blocks ?
(treatments)

1-15

Milliken & Johnson (1992), *Analysis of Messy Data*, Vol.1,
Chapter 4

Treatment structure

- One-way
- Two-way
- Factorial arrangement
- Fractional factorial arrangement
- Factorial arrangement with one/more controls

Plot (design) structure

- Completely randomized
- Randomized complete block
- Latin square
- Incomplete block
- Various combinations and generalization

Any type of treatment structure can occur with any type of plot structure

1-16

Def: The design is the allocation of treatments to plots

- each plot can receive only one treatment
- a treatment could be applied to several plots
- therefore, the design is a function T

$$T: \Omega \rightarrow \mathcal{T}$$

- plot w is allocated treatment $T(w)$

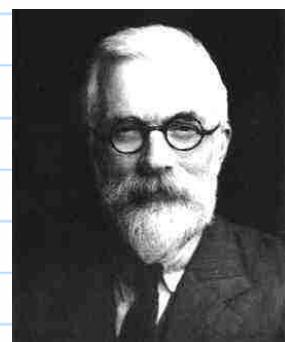
1-17

Def: The plan or layout is the design translated into actual plots.

- Some randomization is usually involved in this translation process.

A DOE should include 4 parts:

1. choice of treatments (structure)
2. choice of plots (structure)
3. design: $T: S \rightarrow J$
4. plan/ layout.


1-18

Why need randomization?

When assigning the treatments to the plots

- Fundamental difficulty: **variability** among the plots; no two plots are exactly the same.
- Different responses may be observed even if the **same** treatment is assigned to the plots.
- Systematic assignments may lead to bias.

R. A. Fisher worked at the Rothamsted Experimental Station in the United Kingdom to evaluate the success of various fertilizer treatments.

1-19

Fisher found the data from experiments going on for decades to be basically worthless because of poor experimental design.

- Fertilizer had been applied to a field one year and not in another in order to compare the yield of grain produced in the two years. BUT
 - It may have rained more, or been sunnier, in different years.
 - The seeds used may have differed between years as well.
- Or fertilizer was applied to one field and not to a nearby field in the same year. BUT
 - The fields might have different soil, water, drainage, and history of previous use.

→ Too many factors affecting the results were “uncontrolled.”

↑
controllable \Rightarrow block

1-20

Fisher's solution: Randomization 隨機化

- In the same field and same year, apply fertilizer to randomly spaced plots within the field.
- This averages out the effect of variation within the field in drainage and soil composition on yield, as well as controlling for weather, etc.

F		F		F			F	F		F
		F	F	F	F		F	F	F	F
	F		F				F	F		F
F	F		F		F		F	F	F	F
	F			F		F	F	F		

1-21

Randomization prevents any particular treatment from receiving more than its fair share of better plots, thereby **may** eliminate potential systematic bias. Some treatments may still get lucky, but if we assign **many** plots to each treatment, then the effects of chance will average out.

In addition to guarding against potential systematic biases, randomization also provides a basis for doing statistical inference. (⇒ **Randomization model**)

Block what you can, randomize what you cannot