

- Return to Wood Product example
- Do exercise

design selection in a real industrial experiment.

Induction

Introduction

-Notation

-Wood Product example

- Fractional Factorial Split-Plot Designs
 Analysis
- Return to Wood Product example
- Do exercise

Introduction

Notation:

- (1) FF design=fractional factorial design
- (2) FFSP design= fractional factorial split-plot design
- (3) WP factor=whole-plot factor , with k1 factors use Capital letter (e.g. A,B,C,...)
- (4) SP factor=sub-plot factor, with k₂ factors use Lowercase letter (e.g. p,q,r,...)
- (5) MA=minimum aberration

Introduction (cont.)

• Q: Why need FFSP design??

Ans:

When it is <u>expensive</u> or <u>difficult to change the</u> <u>levels</u> of some of the factors, or because of <u>actual</u> <u>physical restrictions on the process</u>, it can be impractical to perform experimental runs in a completely random order. In such cases, restrictions on the randomization of experimental trials are imposed resulting in a split-plot structure

Introduction (cont.)

 Q: A question which commonly arises is which of the many possible FFSP designs should be used??

Ans:

minimum aberration (MA) FFSP designs (Huang, Chen and Voelkel (1998);Bingham and Sitter (1999)). However, unlike FF designs,

FFSP designs have two sources of error which are used to assess the significance of the effects.

Wood Product Example

Investigate the affect of certain factors on the swelling properties of a wood product.

(1) $k_1=5 => 5$ WP factors

 $k_2=3 => 3$ SP factors

Each of the $k_1 + k_2 = 8$ factors are to be investigated

(2) To construct the design we assign p_1 WP factors and p2 SP factors to interactions involving the remaining factors, where $p = p_1 + p_2$ p fractional generators

$2^{(k_1+k_2)-(p_1+p_2)}$ FFSP design

- In Wood Product Example: k1=5,k2=3, p1=1,p2=1 (E=ABCD,r=pq)
- Defining contrast sub-group

I = pqr = ABCDE = ABCDEpqr(1)

Word length pattern

Let Ai(D) denote the number of words of length i in the defining contrast sub-group, D, and let

W = (A3(D), A4(D), A5(D), ...) W = (1, 0, 1, 0, 0, 1)

Resolution

A design is the length of the shortest word in the defining contrast sub-group resolution III

MA criterion

Suppose that D1 and D2 are $2^{(k_1+k_2)-(p_1+p_2)}$ FFSP design If Ai(D1) = Ai(D2) for i = 3, ..., r - 1 and

Ar(D1) < Ar(D2) we say D1 has less aberration than D2. A design is said to be MA if no other design has less aberration.

Note that :

the MA criterion treats all factors and effects of the same order equally.

Discussion 1:

 1.The approach to design construction used to get <u>Equation (1)</u> is too restrictive, resulting in a poor design.

Though it is <u>resolution V in the WP factors</u>, it is only <u>resolution III in the SP factors</u>

■ 2. r=AB => **OK!!**

A=pq => **Does not permit!!** (see next slide)

plot factor Vi Is Is Vk
In general, plot structure: ni/nz/nz//nk
treatment factors
AL,, At, EUA EUB
Bi,,Bti Li cause restriction on design: TiD → T
a the set of the foreste
In the assignment of design key 1112.,
$A_{I} = V_{I} \cdots V \qquad B_{e} V_{e} \cdot V$
A cannot confound with plot effects involving VS, V4, V8
A must be confainded with plot effects formed by Vi or D
Vi=+ Vi=- V: V2 V3 A=VV2 A=VV2V3 or both
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
E E E E CAEVa design
2 = + + + + + eligible.

- Induction
- Introduction

-Notation

-Wood Product example

Fractional Factorial Split-Plot Designs

-Analysis

- Return to Wood Product example
- Do exercise

we consider an experiment reported in Miller, Sitter,Wu, and Long (1993).For the purpose of this illustrationWe modify the example slightly and consider only those trials that correspond to

4 replicates of a 5 factor, 16-run experiment.

Drive Gears Example (cont.)

A: furnace track *B*: tooth size C: part positioning *p*: carbon potential *q*: operating mode

K2=2

K1 = 3

P1 = 0

A	B_{-}	С	ę.	a - ABCp	rep 1	rep 2	rep 3	rep 4
				1	18.0	16.5	20.0	22.5
			-	_	21.5	21.0	30.0	94.5
_	-	+	-	_	13.0	8.5	11.5	18.0
			-	+	-1.5	4.00	1.0	8.0
_	-	-	-	-	22.5	27.5	27.0	28.5
				1	15.0	14.0	19.0	14.5
		1		1	0.5	0.5	6.5	7.0
					ā.5	4.5	4.D	5.0
					27.5	19.5	31.D	27.0
				1	17.0	14.0	18.0	17.8
	-	+	-	+	17.5	11.5	10.0	1.0
			-	-	14.5	3.5	7.5	8.5
	-	-	-	+	19.0	16.5	20.0	201.5
			-	-	22.0	23.0	235.0	14.0
		1			24.0	2.5	5.5	11.0
				1	13.5	7.0	8.9	10.5

P2=1 (q=ABCp)

I=ABCpq

Modeling

$$y = f(WP \ effects) + \varepsilon + g(SP \ effects) + e$$

where ε and e are the WP and SP error terms, and f(.) and g(.) are functions of the WP and SP design parameters. It is assumed that ε and e are mutually independent random variables s.t.

$$\varepsilon \sim N(0, \sigma_{WP}^2)$$
 and $e \sim N(0, \sigma_{SP}^2)$

Similar to the randomized block design, we expect the between batch variability to be larger than the within batch variability. That is, $\sigma_{WP}^2 > \sigma_{SP}^2$ Discussion 2

- (1) $df \text{ of WP error} = (l-1)2^{k_1-p_1} = 24$ $df \text{ of SP error} = (l-1)(2^{(k_1+k_2)-(p_1+p_2)}-2^{k_1-p_1}) = 24$ where l = replicates
- (2) df of SP error \geq df of WP error But $\sigma_{WP}^2 > \sigma_{SP}^2$

The different error terms and degrees of freedom imply that the power to detect significant effects is not the same for the WP and SP factors. Since the SP variability is assumed to be smaller than the WP variability and the SP error has at least as many degrees of freedom as the WP error, the power to detect significant SP effects is greater.

Discussion 2 (cont.)

 (3) How to distinguish treatment effect belongs which error term??

Ans:

 WP main effects and interactions involving only WP factors are compared to the WP error.
 SP main effects or interactions that are aliased with WP main effects or interactions involving only WP factors are compared to the WP error.
 SP main effects and interactions involving at least one SP factor that are not aliased with WP main effects or interactions involving only WP factors are compared to the SP error.

Discussion 2 (cont.)

• In Drive Gears Example (I=ABCpq)

Discussion 2 (cont.)

Discussion 2 (cont.)

(5)

Selecting a FFSP design not only does one have to consider the <u>estimation issue</u> <u>captured by the MA criterion</u>, but one will also wish to assess the <u>significance of the factorial effects with</u> <u>as much precision as possible</u>.

Such issues will be discussed in the next.

-

- Example 3: 32 runs, k1=4,k2=3 possible FFSP designs
- D1 : I = ABCD = ABpqr = CDpqr (4.3.1.1)(D=ABC, r=ABpq)

D2: I = ABpq = ACDpr = BCDqr (4.3.0.2)(q=Abp,r=ACDp)

	TADLE 4. Catalog of Minimum Aberration 32-Run FFSP Designs. (Designs are identified by k_1, k_2, p_3, p_2 and ordered by the number of factors $k = k_1 + k_3$.)							
	$k_1 k_2 p_1 p_2$	WLP generators	WLP	# wr	$(n)^{\dagger}$			
_	\$4.0.2°°	ABO_{PT} , ABO_{PT}	012	n	2			
D2	3.4.1.1°	ABC, Appen	1011	4				
D1	4.3.0.2*	ABpg, ACDpr ABCD, ABpar	012	10				
	5.2.1.1*	$ABCE_1 ABDpq$	012	10	<u> </u>			
	$5.2.1.1^{\circ}$	ABCIDE, AB ₂ q	012	16	1			
	Choosir	na Betwee	n Non-	isom	orphic			
	Choosir MA d	ng Betwee esign??	n Non-	isom	orphic			
4	Choosir MA d	ng Betwee esign??	n Non-	isomo	orphic			
• Exa	Choosir MA do ample 4:	ng Betwee esign?? 32-runs, ki	n Non- L=2,k2=	isom =6,p1=	orphic =0,p2=			
• Exa	Choosir MA d ample 4: =Apqs=Apr	ng Betwee esign?? 32-runs, k1 rt=ABqru=qrst=	n Non- L=2,k2= = <i>Bprsu=B</i>	isomo =6,p1= pqtu=Al	orphic =0,p2= _{Bstu(2.6.0}			
• Exa D1 : I D2 : I	Choosir MA d ample 4: =Apqs=Apr =ABpqs=Ar	ng Betwee esign?? 32-runs, k1 rt=ABqru=qrst= Bprt=ABqru=qr	n Non- L=2,k2= =Bprsu=Bprsu=Bprsu=	isome =6,p1= pqtu=Al	orphic =0,p2= Bstu(2.6.0 Bstu(2.6.0			
• Exa D1 : I D2 : I D3 : I	Choosir MA d ample 4: =Apqs=Apr =ABpqs=Apr =ABqs=Apr	ng Betwee esign?? 32-runs, k1 rt=ABqru=qrst= Bprt=ABqru=qr qt=ABpru=Bpst	n Non- L=2,k2= =Bprsu=B rst=prsu=L	isomo =6,p1= pqtu=Al pqtu=Al Bqrtu=A	orphic =0,p2= Bstu(2.6.0 Bstu(2.6.0			
 Exa D1 : I D2 : I D3 : I D4 : I 	Choosir MA d ample 4: =Apqs=Apr =ABqs=Apr =ABqs=Apr =ABqs=Apr	ng Betwee esign?? 32-runs, k1 rt=ABqru=qrst= Bprt=ABqru=qr qt=ABpru=Bpst rt=Apqru=qrst=	n Non- L=2,k2= =Bprsu=Bp	isome =6,p1= pqtu=Al pqtu=Al Bqrtu=A pqtu=A	orphic =0,p2= Bstu(2.6. Bstu(2.6. arstu(2.6.			

	Tid	ABLE 4. Catalog of Minimum Abera lemilied by k_1, k_2, p_3, p_3 and ordered	ation 32-Bun FESP by the number of B	are 9-)	-	Cons	ider of (Cost a	nd R	un-size	
	k_1, k_2, y_1, y_2	WLP generators	WLF	[≞] w₽	(6)						
	1.7.0.3*	$Aynt_1 Aynu, Appev$	034	3	C		In ex	ample 3: I	D1 & D2	desig	n
D1	1.7.0.3* 2.6.0.3*	pyrt, pyru, Aprev Anos, Aprt, Albern	D 3 4 D 3 4	2 d	c						
B2	2.6.0.3'	ABous, ABort, ABort	034	d	U		1	IABLE 4. Catalog of Minimum. dentified by <i>k</i> ₁ , <i>k</i> 2, <i>m</i> 2, <i>m</i> 2 and on	Aberration 32-Run FT SP deted by the number of fa	Designs: (Designs) externs $k = k_1 + k_2$	are J
D3	2.6.0.3'	AB45, April, AB974 AB45, AB45, Amerika	034	6	1			and we should be a set of the set	derectoy die nomber of a	$c_{ab} = c_1 + c_2$	14
	3.5.0.3**	ABCpt, ABCq9, Apqt	034	5	2		$k_1 k_2 p_1 p_2$	WLP generators	WLP	$\frac{\pi}{2}$ WP	$(a)^{\dagger}$
D1 a	nd D2 have no ar	v SP 2fi's that are ali	iased with V	VP main ef	ffects or		是 4.0.2°P	$ABOpr_s ABOps$	012	٥	3
514	inter	actions involving only	WP factors	5.			3.4.1.12	ABC, $Appen$	1011		Û
D3	has one SP 2fi ali	ased with a 2fi of onl	ly WP facto	rs (i.e., <i>AB</i>	s = qs)		4.3.0.2*	ABpg. ACDpr	012	- 10	2
D4 has two	SP 2fi's aliased v	with an interaction of	only WP fac	ctors (i.e.,	AB = qs = rt).		5.21.1*	ABCLI, ABBGT	012		0
D1 and		alont and botto	r than D	2 which	ic in turn		5.2.1.1"	ABCDE, ABpg	012	16	1
D1 and D2 are equivalent, and better than D3 which is in turn											
			74.				1 only 8 W	P settings.D2	needs 16 V	VP settir	ngs
• Ind • Intr -I -\	uction roduction Notation Wood Product	t example					Wood Two-st	d Produe	ct Exa	mple	2
■ Fra	Ctional Fa Analysis	ctorial Split-	PIOT De	esigns			Mixing sta (batch)	ge	·		
- Return to Wood Product example						A -	Wood type		Processing (sub-bat	stage tch)	
			слаттр			B -	Amount of addi	itive 1			
Do	exercise					C-	Amount of addi	itive	p - Process	time	
						<i>D</i> - <i>E</i> -	Wood size Wood moisture		<i>q</i> - Pressure <i>r</i> - Material	: density.	

NTHU STAT 6681, 2007

Induction

Introduction

-Notation

- -Wood Product example
- Fractional Factorial Split-Plot Designs
 Analysis
- Return to Wood Product example
- Do exercise

plan and the restrictions on randomization:

-A,B,C to larger experimental unit. as in a complete-block design

- p to small experimental unit.

within each small block , complete randomized design NTHU STAT 6681, 2007

Final Presentation

