

Analyzing Unreplicated Blocked or Split-Plot Fractional Factorial Designs

指導老師：鄭少爲 老師

學生：9524517 方心伶

Fractional Factorial Designs

- In many industrial settings, experimental replication is sacrificed for run size. This can present serious difficulties in the analysis.
- An experimenter wishes to test various factors. In order to test many factors in an experiment, many industrial experiments are performed using a fractional factorial(FF) design.
- FF designs are run by assigning additional factors to the unused runs in a full factorial design with $k-p$ factors.

Outline

- Fractional Factorial Designs
- Blocked Fractional Factorial Designs
- Methods for Analysis of Blocked FF Designs
- Fractional Factorial Split-Plot Designs
- Methods for Analysis of FFSP Designs
- Example

Blocked Fractional Factorial Designs

- If we wish to run an experiment in 2^p blocks, we can use multiple effect columns and suitable replacement rules.
- For example, to run an experiment in four blocks, we can use

b_1	b_2	$b_1 b_2$	Block Indicator
-1	-1	+1	0
+1	-1	-1	1
-1	+1	-1	2
+1	+1	+1	3

Blocked Fractional Factorial Designs(cont.)

- The model for a blocked factorial design may be summarized by

$$y = f(\text{Treatments}) + \varepsilon + f(\text{Blocks}) + e,$$

where ε and e are the treatment and block error terms, and $f(\cdot)$ and $g(\cdot)$ are functions of the treatments and block effects. It is also assumed that ε and e are mutually independent, such that $\varepsilon \sim N(0, \sigma_{Trt}^2)$ and $e \sim N(0, \sigma_B^2)$.

- When an experimenter wishes to run a FF design and restrictions result in the need for blocking, the alias structure is slightly more complicated.

Blocked Fractional Factorial Designs (cont.)

- Example1 :**

A blocked FF design was performed where the fractionation for the treatments was based on $E = ABC$ and $F = BCD$, and the blocks were chosen by assigning $b_1 = ACD$ and $b_2 = ABD$. This implies that

$$I = ABCE = BCDF = ACDb_1 = ABDb_2, \text{ with the defining contrast subgroup}$$

$$\begin{aligned} I &= ABCE = BCDF = ACDb_1 = ABDb_2 = ADEF = BDEb_1 \\ &= CDEb_2 = ABFb_1 = ACFb_2 = BCb_1b_2 = CEFb_1 \\ &= BEFb_2 = AEb_1b_2 = DFb_1b_2 = ABCDEFb_1b_2 \end{aligned}$$

Blocked Fractional Factorial Designs (cont.)

We denote a blocked FF by $2^{(k+m)-(m+p)}$, where k is the number of factors under consideration, p is the degree of fractionation for the k factors, and m is the number of blocking factors.

In the above experiment, we have $2^{(6+2)-(2+2)}$ blocked FF. A particular alias string would be found in the same fashion as outlined previously; however, any interaction between blocks and factors is assumed to be negligible.

Methods for Analysis of Blocked FF Designs

➤ Half-Normal Plots

- Plotting $\Phi^{-1}(0.5 + 0.5[i + 0.5]/(n-1))$ against $|\hat{\beta}|_{(i)}$ for $i=1,2,\dots,n$, where we have the ordered absolute effects $|\hat{\beta}|_{(1)} \leq |\hat{\beta}|_{(2)} \leq \dots \leq |\hat{\beta}|_{(n)}$ and $\Phi(\cdot)$ is the cumulative distribution function of a standard normal.
- In order to use a half-normal probability plot, all of the estimators must have the **same variance**.
- The factorial effects all have the same variance and are independent of blocks, but the estimated block effects have a different variance.
- This involves a plot of $\Phi^{-1}(0.5 + 0.5[i + 0.5]/r)$ against $|\hat{\beta}|_{(i)}$ for $i=1,2,\dots,r$, $r=n-2^m+1$ factorial effects β_1, \dots, β_r .

Methods for Analysis of Blocked FF Designs (cont.)

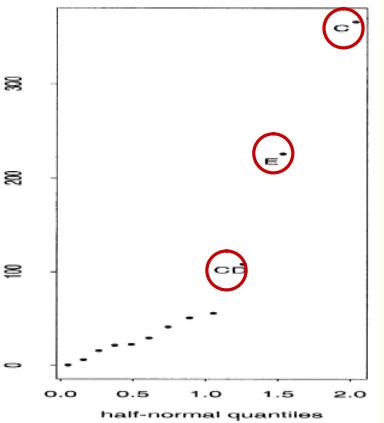
- Consider example 1 ,the data from the experiment.

std. order	block	b_1	b_2	$b_1 b_2$	A	B	C	D	E	F	Mean
1	I	-1	-1	1	-1	-1	-1	-1	-1	-1	1085
8	I	-1	-1	1	1	1	1	-1	1	-1	1357
10	I	-1	-1	1	1	-1	-1	1	1	1	377
15	I	-1	-1	1	-1	1	1	1	-1	1	1910
3	II	-1	1	-1	-1	1	-1	-1	1	1	697
6	II	-1	1	-1	1	-1	1	-1	-1	1	1738
12	II	-1	1	-1	1	1	-1	1	-1	-1	959
13	II	-1	1	-1	-1	-1	1	1	1	-1	1274
4	III	1	-1	-1	1	1	-1	-1	-1	1	1261
5	III	1	-1	-1	-1	-1	1	-1	1	1	1118
11	III	1	-1	-1	-1	1	-1	1	1	-1	516
14	III	1	-1	-1	1	-1	1	1	-1	-1	1784
2	IV	1	1	1	1	-1	-1	-1	1	-1	782
7	IV	1	1	1	-1	1	1	-1	-1	-1	1675
9	IV	1	1	1	-1	-1	-1	1	-1	1	702
16	IV	1	1	1	1	1	1	1	1	1	1378

Methods for Analysis of Blocked FF Designs (cont.)

$$n=2^4-1=15, m=2, r=15-2^2+1=12$$

- From the plot we can see that there were two or three possible significant effects.



Methods for Analysis of Blocked FF Designs (cont.)

➤ Lenth's Method

- Pseudo standard error (PSE) to estimate the standard deviation of the n factorial effect estimates, $\hat{\beta}_i$.
- We consider the factorial effect estimates $\hat{\beta}_1, \dots, \hat{\beta}_r$ free of the blocking effects and the mean.
- Define : $PSE = 1.5 \cdot \text{median}_{\{\hat{\beta}_i \mid |\hat{\beta}_i| < 2.5s_0, i=1, \dots, r\}} |\hat{\beta}_i|$
where $s_0 = 1.5 \cdot \text{median}_{\{i=1, \dots, r\}} |\hat{\beta}_i|$. The test statistic is then calculated by dividing the effect estimates by the PSE , i.e., $t_{Lenth,i} = \frac{\hat{\beta}_i}{PSE}$, for $i=1, \dots, r$.

Methods for Analysis of Blocked FF Designs (cont.)

- Two types of error,
 - Individual Error Rate (IER) : the average proportion of inactive effects declared active.
 - Experiment-wise Error Rate (EER) : the proportion of models which are incorrectly identified.

# runs	# blocks	# effects	α					
			0.005	0.01	0.05	0.1	0.2	0.4
<i>IER</i>								
8	1	7	16.804	5.102	2.329	1.732	1.207	0.748
	2	6	7.429	5.467	2.211	1.645	1.157	0.775
	4	4	9.012	6.363	2.033	1.483	1.069	0.769
16	1	15	4.489	3.678	2.162	1.705	1.257	0.793
	2	14	4.576	3.774	2.161	1.698	1.250	0.796
	4	12	4.960	4.023	2.196	1.705	1.241	0.790
	8	8	6.134	4.746	2.224	1.673	1.197	0.780
32	1	31	3.462	3.048	2.060	1.678	1.276	0.817
	2	30	3.467	3.070	2.063	1.680	1.275	0.817
	4	28	3.512	3.098	2.067	1.682	1.272	0.816
	8	24	3.690	3.207	2.087	1.689	1.270	0.812
	16	16	4.241	3.535	2.133	1.691	1.258	0.799
64	1	63	3.128	2.801	2.015	1.669	1.281	0.831
	2	62	3.129	2.804	2.018	1.670	1.282	0.831
	4	60	3.142	2.809	2.019	1.670	1.282	0.830
	8	56	3.169	2.831	2.025	1.671	1.280	0.829
	16	48	3.234	2.880	2.034	1.675	1.281	0.827
	32	32	3.494	3.047	2.064	1.683	1.273	0.819

# runs	# blocks	# effects	α					
			0.005	0.01	0.05	0.1	0.2	0.4
<i>EER</i>								
8	1	7	13.383	9.417	4.920	3.704	2.452	1.818
	2	6	13.457	10.820	5.240	3.717	2.256	1.692
	4	4	17.835	12.663	5.313	2.964	1.922	1.412
16	1	15	7.900	6.756	4.265	3.522	2.850	2.152
	2	14	8.064	6.726	4.407	3.583	2.821	2.109
	4	12	8.549	7.090	4.547	3.619	2.767	2.053
	8	8	10.689	8.475	4.895	3.674	2.400	1.838
32	1	31	5.613	5.100	3.940	3.433	2.979	2.412
	2	30	5.575	5.073	3.933	3.438	2.995	2.403
	4	28	5.711	5.207	3.946	3.449	2.984	2.377
	8	24	6.214	5.460	4.014	3.475	2.949	2.316
	16	16	7.477	6.218	4.226	3.508	2.839	2.155
64	1	63	4.906	4.567	3.799	3.462	3.128	2.714
	2	62	4.915	4.559	3.806	3.470	3.124	2.712
	4	60	4.962	4.552	3.817	3.464	3.122	2.697
	8	56	5.002	4.598	3.838	3.466	3.097	2.677
	16	48	5.091	4.694	3.823	3.458	3.065	2.634
	32	32	5.919	5.282	3.943	3.448	2.993	2.427

Methods for Analysis of Blocked FF Designs (cont.)

Re-analyzed example 1:

- The estimated effects $C = 365.94$, $E = -225.94$, $CD = 108.06$, $B = 55.81$, $D = -50.81$, $A = 41.19$, $AD = -29.19$, $BD = 22.44$, $AB = -21.56$, $F = -15.69$, $AC = -6.19$, and $AF = -0.31$
- $s_0 = 52.781$, $PSE = 33$,
- Effects are declared significant if $|t_{Lenth,i}| = |\hat{\beta}_i / PSE|$ is greater than the critical value.
(5% IER = 2.196, EER = 4.547)
- IER: C, E, CD as significant effects.
- EER: C, E as significant effects. → **more conservative**

Fractional Factorial Split-Plot Designs

- In many industrial experiments, even when there is no blocking, it is not possible to perform all of the runs in a completely randomized order. This restriction on randomization will result in a split-plot structure.
- The design will be denoted as a $2^{(k_1+k_2)-(p_1+p_2)}$ FFSP, where k_1 is the number of WP (whole-plot) factors, p_1 is the degree of fractionation at the whole plot level, k_2 is the number of SP (sub-plot) factors, and p_2 is the degree of fractionation for the sub-plot design.

Fractional Factorial Split-Plot Designs(cont.)

- The model for a full factorial split-plot can be summarized as $y = f(\text{WP effects}) + \varepsilon + g(\text{SP effects}) + e$, where ε and e are the WP and SP error terms, and $f(\cdot)$ and $g(\cdot)$ are functions of the WP and SP terms.
- ε and e are mutually independent, such that $\varepsilon \sim N(0, \sigma_{WP}^2)$ and $e \sim N(0, \sigma_{SP}^2)$.
- The two different error terms imply that not all effects have the same variance.

Methods for Analysis of FFSP Designs

• Example 2:

$k_1=8$, (WP factors = A, B, C, D, E, F, G, H)

$k_2=3$, (SP factors = p, q, r)

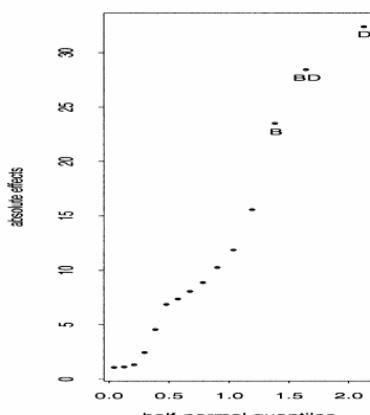
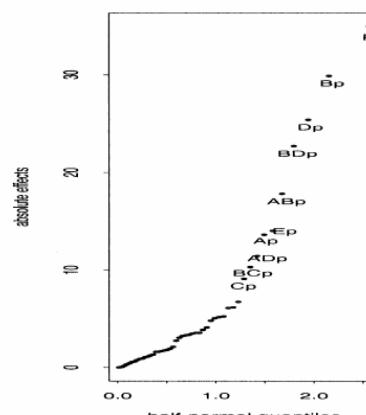
$p_1=4$, ($E = ABD, F = ABC, G = BCD$, and $H = ACD$)

$p_2=1$, ($r = pq$)

Methods for Analysis of FFSP Designs (cont.)

➤ Half-Normal Plot

- Stratum: $S_0 \oplus S_1 \oplus S_2$,
 S_1 and S_2 have different variance



Methods for Analysis of FFSP Designs(cont.)

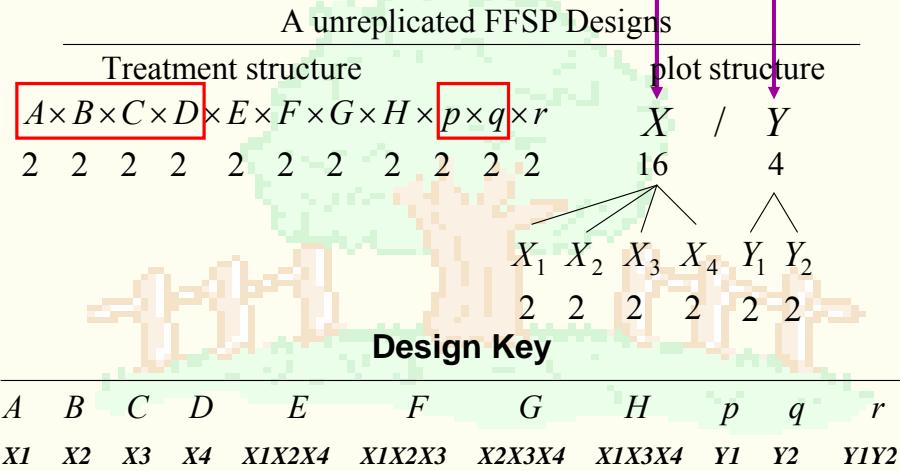
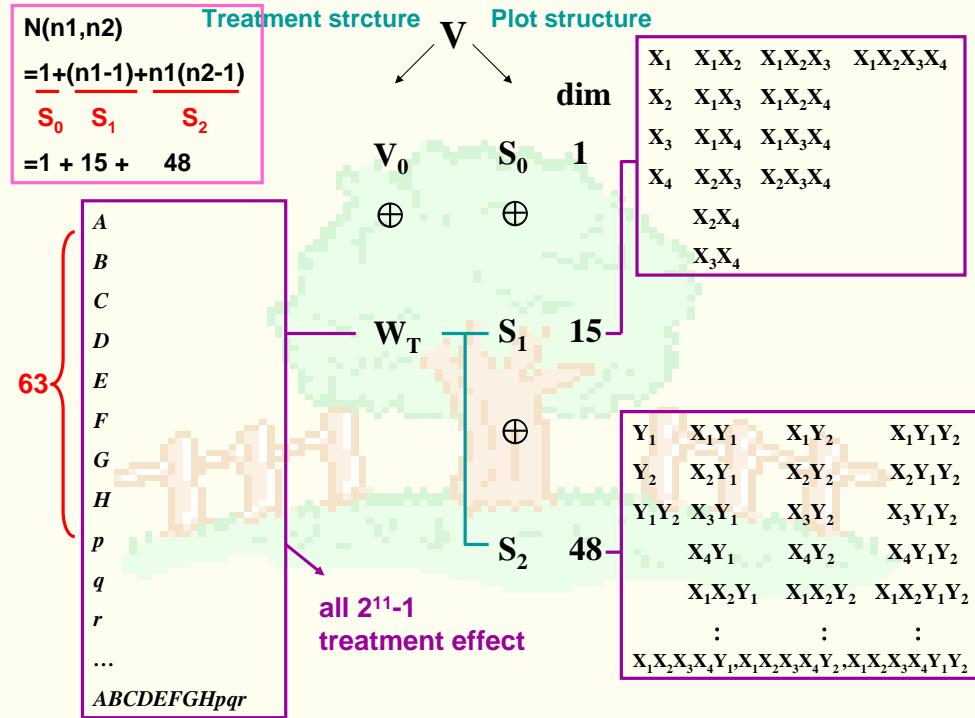
➤ Lenth's Method

- Since the test is applied as a randomized designs for the WP factors, one should use the critical values.
- The SP effects are tested as a blocked FF design, and thus the critical values presented in Table.

From example 2:

- Applying Lenth's method to the WP effects again declared D, BD, and B as significant.
- The test on the SP effects declared p, Bp, DP, BDp, ABp = DEp, Ep, Ap, ADp, and BCp.

Example



Alias structure

$I = ABDE = ABCF = BCDG = ACDH = pqr = CDEF = ACEG = BCEH = ABDEpqrs = ADFG = BDFH = ABCFpqrs = ABGH = BCDGpqrs = ACDHpqrs = BEFG = AEFH = CDEFpqrs = DEGH = ACEGpqrs = BCEHpqrs = CFGH = ADFGpqrs = BDFHpqrs = ABGHpqrs = ABCDEFGH = BEFGpqrs = AEFHpqrs = DEGHpqrs = FGpqrs = ABCEFGHpqrs$

Coufounded

$A = BDE = BCF = ABCDG = CDH = Apqr = ACDEF = CEG = ABCEH = BDEpqrs = DFG = ABDFH = BCFpqrs = BGH = ABCDGpqrs = CDHpqrs = ABEFG = EFH = ACDEFpqrs = ADEGH = CEGpqrs = ABCEHpqrs = ACFGH = DFGpqrs = ABDFHpqrs = BGHpqrs = BCDEFGH = ABEFGpqrs = EFHpqrs = ADEGHpqrs = AFGHpqrs = BCEFGHpqrs = X1$

$B = ADE = ACF = CDG = ABCDH = Bpqrs = BCDEF = ABCEG = CEH = ADEpqrs = ABDFG = DFH = ACFpqrs = AGH = CDGpqrs = ABCDHpqrs = EFG = ABEFH = BCDEFpqrs = BDEGH = ABCEGpqrs = CEHpqrs = BCFGH = ABDFGpqrs = DFHpqrs = AGHpqrs = ACFEGH = EFGpqrs = ABEFHpqrs = BDEGHpqrs = BFGHpqrs = ACEFGHpqrs = X2$

$C = ABCDE = ABF = BDG = ADH = Cpqr = DEF = AEG = BEH = ABCDEpqrs = ACDFG = BCDHF = ABFpqrs = ABCGH = BDGpqrs = ADHpqrs = BCEFG = ACEFH = DEFpqrs = CDEGH = AEGpqrs = BEHpqrs = FGH = ACDFGpqrs = BCDFHpqrs = ABCGHpqrs = ABDEFGH = BCEFGpqrs = ACEFHpqrs = CDEGHpqrs = CFGHpqrs = ABEFGHpqrs = X3$

$D = ABE = ABCDF = BCG = ACH = Dpqrs = CEF = ACDEG = BCDEH = ABEpqr = AFG = BFH = ABCDFpqrs = ABDGH = BCGpqrs = ACHpqrs = BDEFG = ADEFH = CEFpqrs = EGH = ACDEGpqrs = BCDEHpqrs = CDFGH = AFGpqrs = BFHpqrs = ABDGHpqrs = ABCEFGH = BDEFGpqrs = ADEFHpqrs = EGHpqrs = DFGHpqrs = ABCDEFGHpqrs = X4$

$E = ABD = ABCEF = BCDEG = ACDEH = Epqr = CDF = ACG = BCH = ABEpqr = AFG = ADEFG = BDEFH = ABCEFpqrs = ABEGH = BCDEGpqrs = ACDEHpqrs = BFG = AFH = CDFpqrs = DGH = ACGpqrs = BCHpqrs = CEFHG = ADEFGpqrs = BDEFHpqrs = ABEGHpqrs = ABCDFGH = BFGpqrs = AFHpqrs = DGHpqrs = EFGHpqrs = ABCFGHpqrs = X1X2X4$

$F = ABDEF = ABC = BCDFG = ACDFH = Fpqr = CDE = ACEFG = BCEFH = ABDEFpqr$
 $= ADG = BDH = ABCpqr = ABFGH = BCDFGpqr = ACDFHpqr = BEG = AEH = CDEpqr$
 $= DEFGH = ACEFGpqr = BCEFHpqr = CGH = ADGpqr = BDHpqr = ABFGHpqr$
 $= ABCDEGH = BEGpqr = AEHpqr = DEFGHpqr = GHpqr = ABCEGHpqr = X1X2X3$

$G = ABDEG = ABCFG = BCD = ACDGH = Gpqr = CDEFG = ACE = BCEGH = ABDEGpqr$
 $= ADF = BDFGH = ABCFGpqr = ABH = BCDpqr = ACDGHpqr = BEF = AEFGH$
 $= CDEFGpqr = DEH = ACEpqr = BCEGHpqr = CFH = ADFpqr = BDFGHpqr$
 $= ABHpqr = ABCDEFH = BEFpqr = AEFGHpqr = DEHpqr = FHpqr = ABCEFHpqr$
 $= X2X3X4$

$H = ABDEH = ABCFH = BCDGH = ACD = Hpqr = CDEFH = ACEGH = BCE = ABDEHpqr$
 $= ADFGH = BDF = ABCFHpqr = ABG = BCDGHpqr = ACDpqr = BEFGH = AEF$
 $= CDEFHpqr = DEG = ACEGHpqr = BCEpqr = CFG = ADFGHpqr = BDFpqr$
 $= ABGpqr = ABCDEFG = BEFGHpqr = AEFpqr = DEGpqr = FGpqr = ABCEFGpqr$
 $= X1X3X4$

$AB = \dots = X1X2$	$Dr = \dots = X4Y1Y2$	$ACr = \dots = X1X3Y1Y2$
$AC = \dots = X1X3$	$Ep = \dots = X1X2X4Y1$	$ADp = \dots = X1X4Y1$
$AD = \dots = X1X4$	$Eq = \dots = X1X2X4Y2$	$Adq = \dots = X1X4Y2$
$AE = \dots = X2X4$	$Er = \dots = X1XX2X4Y1Y2$	$Adr = \dots = X1X4Y1Y2$
$AF = \dots = X2X3$	$Fp = \dots = X1X2X3Y1$	$AEp = \dots = X2X4Y1$
$AG = \dots = X1X2X3X4$	$Fq = \dots = X1X2X3Y2$	$AEq = \dots = X2X4Y2$
$AH = \dots = X3X4$	$Fr = \dots = X1X2X3Y1Y2$	$AEr = \dots = X2X4Y1Y2$
$Ap = \dots = X1Y1$	$Gp = \dots = X2X3X4Y1$	$AFp = \dots = X2X3Y1$
$Aq = \dots = X1Y2$	$Gq = \dots = X2X3X4Y2$	$AFq = \dots = X2X3Y2$
$Ar = \dots = X1Y1Y2$	$Gr = \dots = X2X3X4Y1Y2$	$AFr = \dots = X2X3Y1Y2$
$Bp = \dots = X2Y1$	$Hp = \dots = X1X3X4Y1$	$AGp = \dots = X1X2X3X4Y1$
$Bq = \dots = X2Y2$	$Hq = \dots = X1X3X4Y2$	$AGq = \dots = X1X2X3X4Y2$
$Br = \dots = X2Y1Y2$	$Hr = \dots = X1X3X4Y1Y2$	$AGR = \dots = X1X2X3X4Y1Y2$
$Cp = \dots = X3Y1$	$Abp = \dots = X1X2Y1$	$Ahp = \dots = X3X4Y1$
$Cq = \dots = X3Y2$	$Abq = \dots = X1X2Y2$	$Ahq = \dots = X3X4Y2$
$Cr = \dots = X3Y1Y2$	$ABr = \dots = X1X2Y1Y2$	$Ahr = \dots = X3X4Y1Y2$
$Dp = \dots = X4Y1$	$ACp = \dots = X1X3Y1$	
$Dq = \dots = X4Y2$	$ACq = \dots = X1X3Y2$	

$p = ABDEp = ABCFp = BCDGp = ACDHp = qr = CDEFp = ACEGp = BCEHp$
 $= ABDEqr = ADFGp = BDFHp = ABCFqr = ABGHp = BCDGqr = ACDHqr = BEFGp$
 $= AEFHp = CDEFqr = DEGHp = ACEGqr = BCEHqr = CFGHq = ADFGqr = BDFHqr$
 $= ABGHqr = ABCDEFGHp = BEFGqr = AEFHqr = DEGHqr = FGHqr$
 $= ABCEFGHqr = Y1$

$q = ABDEq = ABCFq = BCDGq = ACDHq = pr = CDEFq = ACEGq = BCEHq$
 $= ABDEpr = ADFGq = BDFHq = ABCFpr = ABGHq = BCDGpr = ACDHpr = BEFGq$

$= AEFHq = CDEFpr = DEGHq = ACEGpr = BCEHpr = CFGHq = ADFGpr = BDFHpr$
 $= ABGHpr = ABCDEFGHq = BEFGpr = AEFHpr = DEGHpr = FGHpr$
 $= ABCEFGHpr = Y2$

$r = ABDEr = ABCFr = BCDGr = ACDHr = pq = CDEFr = ACEGr = BCEHr = ABDEpq$
 $= ADFGr = BDFHr = ABCFpq = ABGHr = BCDGpq = ACDHpq = BEFGr = AEFHr$
 $= CDEFpq = DEGHr = ACEGpq = BCEHpq = CFGHr = ADFGpq = BDFHpq$
 $= ABGHpq = ABCDEFGHr = BEFGpq = AEFHpq = DEGHpq = FGHpq$
 $= ABCEFGHpq = Y1Y2$

- restrictions on the allocation of treatments to plots :
 - Treatment main factors can confounded with some of sub-plot effects, but cannot confounded with whole-plot effects.
- plan and the restrictions on randomization:
 - Apply treatment A,B,...,H to larger experimental unit.
 - Apply treatment p,q,r to each whole-plot as completely randomized design.

ANOVA table

stratum	Source	d.f.	S.S.	M.S.
S_0	mean	1	$\frac{\text{sum}^2}{64}$	$\ \tau_0\ ^2 + \zeta_0$
S_1	A, B, C, D, E, F, G, H, AB, AC, AD, AE, AF, AG, AH	15	$\ P_1 y\ ^2$	ζ_1
S_2	p, q, r	3	$SS(\cdot)$	$\frac{1}{3} \ \tau\ ^2 + \zeta_2$
	Residual	45	$\ y - Gy\ ^2 - SS(\cdot)$	ζ_2
Total		64	$\ y - Gy\ ^2$	