24 Run Split-Plot Experiments For Robust Parameter Design

944008 陳錫慧

The goal of the experiment

- Main effects for the whole plot factors
- Main effects for the subplot factors
- Two-factor interactions between the whole plot and subplot factors
- Two-factor interactions among subplot factors

Outline

- Constructing 24 Run Designs
 Use confounding
 Based on a block design
- Comparing 24-run and 32-run designs
- An example
- Analysis

Yates notation

- If a factor is at its low level, the corresponding letter is omitted from the treatment designation. Conversely, if a factor is at its high level, the corresponding letter is included.
- When all of the factors are at their low level, the treatment is designated by the symbol (1).

Constructing 24 Run Designs using confounding

MA designs for 16 runs

 MA designs use eight whole plots with two subplots per whole plot

1.cost consideration

2. It is not an efficient allocation of the degrees of freedom (df).

3. it often results in a less sensitive test of treatment differences.

Case1:2WP factors (A,B) and 4 SP factors (P,Q,R,S)

I=PQR=QRS=PS

TABLE 2. 24 Point Design With of 2 WP and 4 SP Factors Using the Same Fraction [HP(HS) denotes high P(S) and LP(LS) denotes low P(S)]

a	ь	ab	(1)
q r ps pqrs	$\begin{array}{c} q \\ r \\ ps \\ pqrs \end{array}$	q r	$\begin{array}{c} q \\ r \\ ps \\ pqrs \end{array}$
	Fol	d on	
HP	LP	HS	LS
s	pq	p	qs
qrs	pr	pqr	rs

Case1:2WP factors (A,B) and 4 SP factors (P,Q,R,S) I=APQR=BQRS=ABPS TABLE 3. 24 Point Design With of 2 WP and 4 SP Factors Using Split-Plot Confounding [HP(HS) denotes high P(S) and LP(LS) denotes low P(S)] Ь ab(1) a s qrqppqrpqspq22 qsprpsprsqrspqrs(1)TSFold on HP LPHSLS(1)pspqrsqrpqrspqrs

Case2:3WP factors (A,B,C) and 3 SP factors (P,Q,R,S)

• I = ABC = ABPQR = CPQR

TABLE 5. 24 Point Design With of 3 WP and 3 SP Factors Using Split-Plot Confounding [HP denotes high P and LP denotes low P]

a	b	c	abc
pq pr qr (1)	pq pr qr (1)	p q r pqr	p q r pqr
	Fol	d on	
HP	LP	LP	HP
$\frac{q}{r}$	pqr p	$pq \\ pr$	(1) qr

Case2:3WP factors (A,B,C) and 3 SP factors (P,Q,R,S)

• I = ABC = PQR = ABCPQR

TABLE 4. 24 Point Design With of 3 WP and 3 SP Factors Using the Same Fraction [HP denotes high P and LP denotes low P]

a	ь	c	abc
p q r pqr	p q r pqr	p q r pqr	p q r pqr
HP	Fol LP	d on LP	HP
$\binom{(1)}{qr}$	$pq \\ pr$	pq pr	${(1)} \\ qr$

Case 3: 4 WP Factors (A, B, C, D) and 3 SP Factors (P, Q, R)

 I = ABC =BCD = AD = PQR = ABCPQR = BCDPQR =ADPQR

> TABLE 6. 24 Point Design With of 4 WP and 3 SP Factors Using the Same Fraction

Comparing 24-run and 32-run designs

• predicted variance: $x'_i (X'V^{-1}X)^{-1} x_i$

X is the design matrix

V is a block diagonal matrix with blocks of $\sigma_{wp}^2 J + \sigma_{sp}^2 I$

- \boldsymbol{x}_i is the ith row of the combined array
- Relative efficiency ratio:

$100 \left[\frac{(32)(\max_{i=1,2,\dots,32} \left[\mathbf{x}_{i}^{\prime} \left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X} \right)^{-1} \mathbf{x}_{i} \right])}{(24)(\max_{i=1,2,\dots,24} \left[\mathbf{x}_{i}^{\prime} \left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X} \right)^{-1} \mathbf{x}_{i} \right])} \right]$

Comparing 24-run and 32-run designs

		2 Whole-Plot Variables and 4 Subplo	t Variables	I=ABPQRS	
		Relative Efficiencies in Percents			
σ^2_{wp}	σ^2_{sp}	Split-plot Confounding	Same Fraction	BIB	
1	1	79.57	88.55	93.21	
3	1	79.60	88.75	83.76	
5	1	83.62	82.20	87.16	
		3 Whole-Plot Variables and 3 Subplo	t Variables	I=ABCPOF	
		Relative Efficie	ncies in Percents	<u> </u>	
σ^2_{wp}	σ^2_{sp}	Split-plot Confounding	Same Fraction	BIB	
1	1	91.55	91.63	91.04	
3	1	83.80	92.89	82.69	
5	1	95.16	93.30	92.30	
		4 Whole-Plot Variables and 3 Subplo	t Variables		
		Relative Efficiencies in Percents – ABDOD			
σ^2_{wp}	σ^2_{sp}	Split-plot Confounding	Same Fraction	=CDPOR	
1	1	90.96	90.96		
3	1	88.73	88.73		
-		0.0.05	00.05		

Example

- 3 whole plot factor (A,B,C)
 3 subplot factor (P,Q,R)
- treatment structure :AxBxCxPxQxR(2x2x2x2x2)
- Plot structure :4/4

$$U(U,V)/W(W_1,W_2)$$

strata :N(n₁,n₂)

Example

 restrictions on the allocation of treatments to plots :

A,B,C cannot confound with W_1,W_2

- A,B,C must be confounded with U,V or UV
- design and design key:
 - A=U B=V C=UV P= W_1 Q= W_2 R= W_1W_2
- plan and the restrictions on randomization:

1.apply treatment a,b,c,abc to larger experimental unit 2.within each whole plot,randomize treatment p,q,r,pqr

Example

- how treatment and plot effects are confounded :the whole plot factor must be confounded with some of 3 block effects
- Stratum

stratum	df	Source
S ₀	1	mean
S ₁	3	A,B,C
S ₂	12	P,Q,R,AP,AQ,AR,BP,BQ,BR, CP,CQ,CR

ANOVA table

Analysis

				-		
TABLE	12.	Effects	Table	tor	the	Example

Term	Effect	Std Error	t-value	P-value
A	0.312	0.6492	NA	
B	0.593	0.6492	NA	
C	-1.531	0.7497	NA	
Б	0.150	0.7407	0.01	0.0421
P	-0.156	0.7497	-0.21	0.8431
Q	0.125	0.7497	0.17	0.8741
R	0.687	0.7497	0.92	0.4012
P^{*Q}	0.468	0.7497	0.63	0.5593
P^*R	0.093	0.7497	0.13	0.9054
Q^*R	-1.562	0.7497	-2.08	0.0916
A^*P	-0.156	0.6492	-0.24	0.8194
A^{*Q}	-0.078	0.6492	-0.12	0.9089
A^*R	-0.078	0.6492	-0.12	0.9089
B^*P	-0.375	0.6492	-0.58	0.5886
B^*Q	0.421	0.6492	0.65	0.5445
B^*R	0.546	0.6492	0.84	0.4381
C^*P	0.343	0.6492	0.53	0.6192
$C^{*}Q$	0.343	0.7497	0.46	0.6658
C^*R	-0.593	0.7497	-0.79	0.4643

NA—Tests on the whole plot factors are not applicable