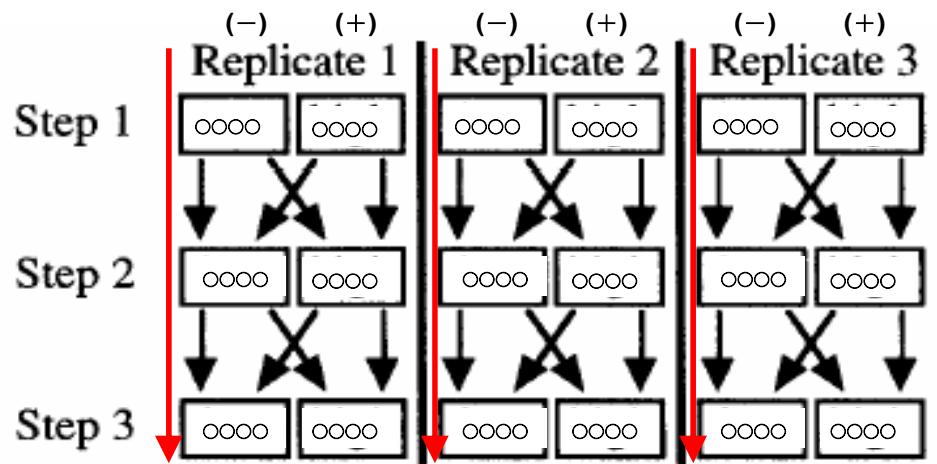


Split-Lot Designs: Experiments for Multistage Batch Processes

Final report — Design and Analysis of
Multi-stratum Randomized Experiments
Presenter: 周伯彥
Date: 2007. 6. 20

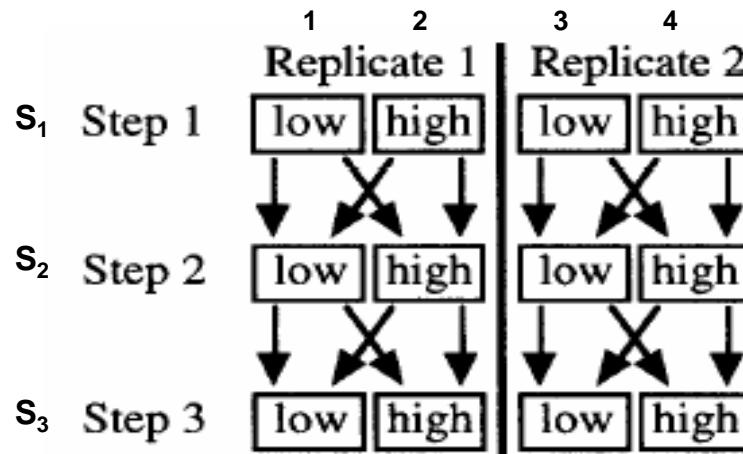
Outline

- Introduction
 - two different designs
- Constructing 16-wafer experiments
- Symmetric split-lot designs for 64-wafer experiments
- Discussions


2

Outline

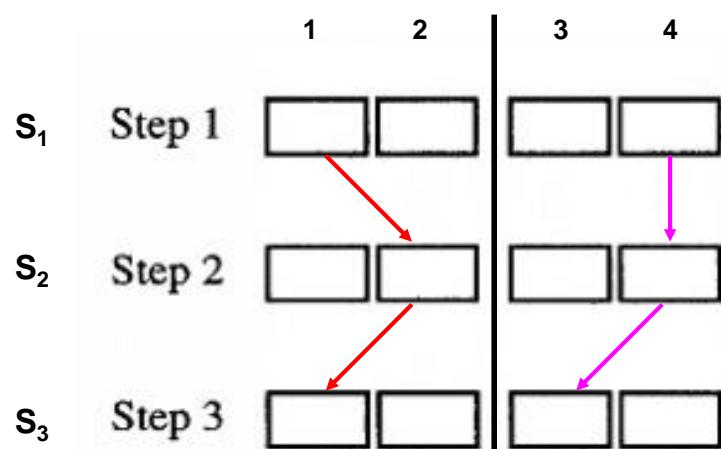
- Introduction
 - two different designs
- Constructing 16-wafer experiments
- Symmetric split-lot designs for 64-wafer experiments
- Discussions


3

Common Split-lot Design: 3 separate replicates of a full 2^3 factorial

4

16-wafer split-lot design:


5

3 factors, 16-wafer design I

Two separate replicates				
		s_1		
s_2		1	2	3
1		1, 2	1, 2	
2		1, 2	1, 2	
3			3, 4	3, 4
4			3, 4	3, 4

6

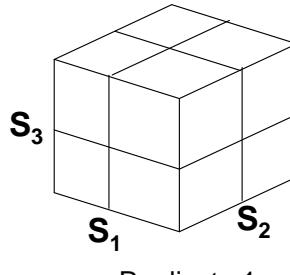
(cont.)

7

A reasonable model

$$Y_S = \mu + \sum_{i=1}^T (a_{S_i(i)} + \alpha_{S_i(i)}) + \sum_{i < j} a_{S_i S_j(ij)} + \varepsilon_S,$$

where $a_{S_i(i)}$ is the effect of the i th stage factor for the S_i th subplot,
 $\alpha_{S_i(i)}$ is the error term associated with the S_i th subplot,
 $a_{S_i S_j(ij)}$ is the interaction effect between the i th stage factor
and the j th stage factor,
& $\alpha_{S_i(i)} \sim N(0, \sigma_i^2)$, $\varepsilon_S \sim N(0, \sigma^2)$.

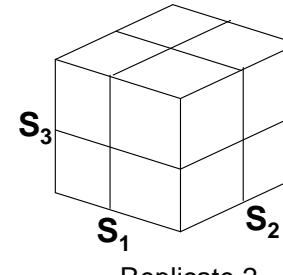

8

Treatment and plot structure

Treatment structure

$$X_1 \times X_2 \times X_3$$

2 2 2



Replicate 1

Plot structure

$$U / (Y \times Z \times W)$$

2 2 2 2

Replicate 2

9

Treatment strata and dimensions

Treatment structure		
df	effect	strata
1		V_0
7	X_1 X_2 X_1X_2 X_3 X_1X_3 X_2X_3 $X_1X_2X_3$	W_T
8		V_T^\perp

10

Plot strata and dimensions

Plot structure		
strata	effect	df
S_0		1
S_1	U	1
S_2	Y,UY	2
S_3	Z,UZ	2
S_4	W,UW	2
S_5	YZ,UYZ	2
S_6	YW,UYW	2
S_7	ZW,UZW	2
S_8	$YZW,UYZW$	2

11

Plot structure		
strata	effect	df
S_0		1
S_1	U	1
S_2	Y,UY	2
S_3	Z,UZ	2
S_4	W,UW	2
S_5	YZ,UYZ YW,UYW ZW,UZW $YZW,UYZW$	8

12

Experimental unit & restrictions

- observational unit & experimental unit

$$U / (Y \times Z \times W)$$

$$EU_{X_1} EU_{X_2} EU_{X_3}$$

- restrictions on allocations of treatments to plots

X_1 can be confounded with plot effects involving U, Y, UY

X_2 U, Z, UZ

X_3 U, W, UW

13

Design and design key

- Design:

2 separate replicates of a full 2^3 factorial

- Design key:

$$X_1 = Y, X_2 = Z, X_3 = W$$

14

Restrictions on randomization

- no pair of wafers is processed together more than once in a subplot for the experimental factors
- all three processing steps are performed on the first eight wafers before any processing is done on the second eight wafers

15

$$\begin{cases} X_1 = Y \\ X_2 = Z \\ X_3 = W \end{cases} \quad \begin{cases} X_1 X_2 = YZ \\ X_1 X_3 = YW \\ X_2 X_3 = ZW \\ X_1 X_2 X_3 = YZW \end{cases}$$

16

ANOVA table

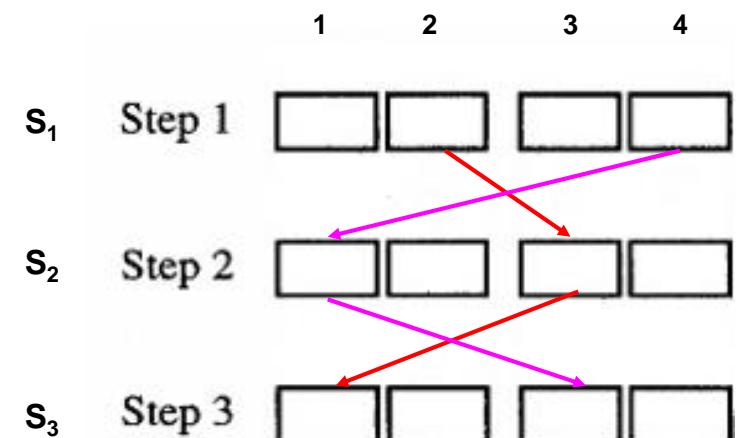
Source	df	EMS
Block	1	ξ_{block}
X_1	1	$\xi_1 + \ \tau_{X_1}\ ^2$
Residual	1	ξ_1
X_2	1	$\xi_2 + \ \tau_{X_2}\ ^2$
Residual	1	ξ_2
X_3	1	$\xi_3 + \ \tau_{X_3}\ ^2$
Residual	1	ξ_3
X_1X_2	1	$\xi_4 + \ \tau_{X_1X_2}\ ^2$
X_2X_3	1	$\xi_4 + \ \tau_{X_2X_3}\ ^2$
X_1X_3	1	$\xi_4 + \ \tau_{X_1X_3}\ ^2$
$X_1X_2X_3$	1	$\xi_4 + \ \tau_{X_1X_2X_3}\ ^2$
Residual	4	ξ_4

17

Concluding remark I

γ separate replicates of a full 2^3 factorial:

- The γ estimates for the main effect X_i provides $\gamma - 1$ df for estimating the subplot variation
- According to the reasonable model, it provides $4(\gamma - 1)$ df for estimating σ^2


18

3 factors, 16-wafer design II

Alternative design				
		S_1		
		1	2	3
S_2	1	2	3	4
1	1	4	2	3
2	3	2	4	1
3	4	1	3	2
4	2	3	1	4

19

(cont.)

20

Design and design key

■ Design:

The authors called “Alternative design”
 Taguchi (1989) referred as “Multiway split-unit design”

■ Design key:

$$X_1 = U_1, X_2 = Y_1, X_3 = Z_1$$

25

Restrictions on randomization

- no pair of wafers appears together in more than one subplot

How treatment and plot effects are confounded

$$\begin{cases} X_1 = U_1 \\ X_2 = Y_1 \\ X_3 = Z_1 \end{cases} \quad \begin{cases} X_1 X_2 = U_1 Y_1 \\ X_1 X_3 = U_1 Z_1 \\ X_2 X_3 = Y_1 Z_1 \\ X_1 X_2 X_3 = U_1 Y_1 Z_1 \end{cases}$$

27

26

ANOVA table

Source	df	EMS
X_1	1	$\xi_1 + \ \tau_{X_1}\ ^2$
Residual	2	ξ_1
X_2	1	$\xi_2 + \ \tau_{X_2}\ ^2$
Residual	2	ξ_2
X_3	1	$\xi_3 + \ \tau_{X_3}\ ^2$
Residual	2	ξ_3
$X_1 X_2$	1	$\xi_4 + \ \tau_{X_1 X_2}\ ^2$
$X_2 X_3$	1	$\xi_4 + \ \tau_{X_2 X_3}\ ^2$
$X_1 X_3$	1	$\xi_4 + \ \tau_{X_1 X_3}\ ^2$
$X_1 X_2 X_3$	1	$\xi_4 + \ \tau_{X_1 X_2 X_3}\ ^2$
Residual	2	ξ_4

28

Concluding remark II

Alternative design of a full 2^3 factorial:

- The estimates for the main effect X_i provides 2 df for estimating the subplot variation
- According to the reasonable model, it provides 2 df for estimating σ^2

29

Comparisons

Design I

Source	df	EMS
Block	1	ξ_{Block}
X_1	1	$\xi_1 + \ \tau_{X_1}\ ^2$
Residual	1	ξ_1
X_2	1	$\xi_2 + \ \tau_{X_2}\ ^2$
Residual	1	ξ_2
X_3	1	$\xi_3 + \ \tau_{X_3}\ ^2$
Residual	1	ξ_3
X_1X_2	1	$\xi_4 + \ \tau_{X_1X_2}\ ^2$
X_2X_3	1	$\xi_4 + \ \tau_{X_2X_3}\ ^2$
X_1X_3	1	$\xi_4 + \ \tau_{X_1X_3}\ ^2$
$X_1X_2X_3$	1	$\xi_4 + \ \tau_{X_1X_2X_3}\ ^2$
Residual	4	ξ_4

Design II

Source	df	EMS
X_1	1	$\xi_1 + \ \tau_{X_1}\ ^2$
Residual	2	ξ_1
X_2	1	$\xi_2 + \ \tau_{X_2}\ ^2$
Residual	2	ξ_2
X_3	1	$\xi_3 + \ \tau_{X_3}\ ^2$
Residual	2	ξ_3
X_1X_2	1	$\xi_4 + \ \tau_{X_1X_2}\ ^2$
X_2X_3	1	$\xi_4 + \ \tau_{X_2X_3}\ ^2$
X_1X_3	1	$\xi_4 + \ \tau_{X_1X_3}\ ^2$
$X_1X_2X_3$	1	$\xi_4 + \ \tau_{X_1X_2X_3}\ ^2$
Residual	2	ξ_4

30

Outline

- Introduction
 - two different designs
- **Constructing 16-wafer experiments**
- Symmetric split-lot designs for 64-wafer experiments
- Discussions

31

A plan of Design II

Table 1. The Alternative Replicated 2^3 Design Written With Wafer Codes

Wafer 1: 111	Wafer 2: 214	Wafer 3: 312	Wafer 4: 413
Wafer 5: 123	Wafer 6: 222	Wafer 7: 324	Wafer 8: 421
Wafer 9: 134	Wafer 10: 231	Wafer 11: 333	Wafer 12: 432
Wafer 13: 142	Wafer 14: 243	Wafer 15: 341	Wafer 16: 444

32

2-level designs of size 16: Orthogonal array given in Yates order

Table 4. Sixteen-Run Orthogonal Array With Contrasts in Standard Order

Wafer	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8	C_9	C_{10}	C_{11}	C_{12}	C_{13}	C_{14}	C_{15}
1	-1	-1	1	-1	1	1	-1	-1	1	1	-1	1	-1	-1	1
2	1	-1	-1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1
3	-1	1	-1	-1	1	-1	1	-1	1	-1	1	1	-1	1	-1
4	1	1	1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1
5	-1	-1	1	1	-1	-1	1	-1	1	1	-1	-1	1	1	-1
6	1	-1	-1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1
7	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1
8	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1
9	-1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	1	-1	-1
10	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1
11	-1	1	-1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	1
12	1	1	1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	-1
13	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1
14	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1
15	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
16	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

33

Procedures

- First, choose two independent contrasts and the third is the product of these two.
- Choose C_1 and C_2

<u>Wafers</u>	<u>C_1</u>	<u>C_2</u>	<u>$S_1 = 2.5 + .5C_1 + C_2$</u>
1, 5, 9, 13	-1	-1	1
2, 6, 10, 14	1	-1	2
3, 7, 11, 15	-1	1	3
4, 8, 12, 16	1	1	4

34

(cont.)

- $X_1 = C_1$; C_2 and $C_3 = C_1 C_2$ are affected by step 1 subplot variation.
- $X_2 = C_4$; C_8 and $C_{12} = C_4 C_8$ are affected by step 2 subplot variation.
- $X_3 = C_{11}$; C_6 and $C_{13} = C_{11} C_6$ are affected by step 3 subplot variation.
- $X_1 X_2 = C_1$, $X_1 X_3 = C_{10}$, $X_2 X_3 = C_{15}$, $X_1 X_2 X_3 = C_{14}$.
- Remaining C_7 and C_9 are used to est. σ^2 .

35

36

How to generate disjoint groups ?

Table 5. Five Disjoint Groups of Three Contrasts for a 2^4

Group	Two independent contrasts	Generalized interaction
1	X_1	X_2X_3
2	X_2	X_3X_4
3	X_3	X_1X_4
4	X_4	X_1X_2
5	X_1X_3	X_2X_4

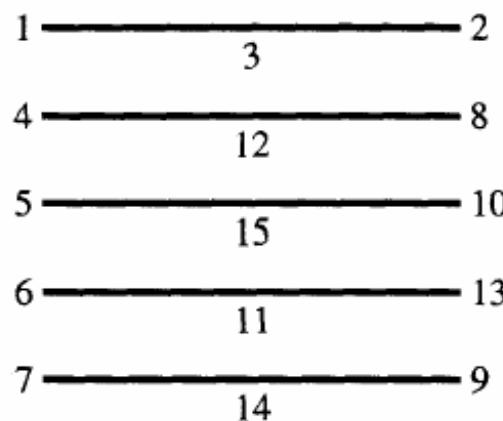
37

Correspond to previous example

(C_1, C_2, C_3)

(C_4, C_8, C_{12})

(C_{11}, C_6, C_{13})


(C_5, C_{10}, C_{15})

(C_7, C_9, C_{14})

→ We can experiment in as many as 5 different steps

38

Linear graph (Taguchi, 1987)

39

Four factors in four steps

Source	df	EMS
X_1	1	$\xi_1 + \ \tau_{X_1}\ ^2$
X_2X_3	1	$\xi_1 + \ \tau_{X_2X_3}\ ^2$
Residual	1	ξ_1
X_2	1	$\xi_2 + \ \tau_{X_2}\ ^2$
X_3X_4	1	$\xi_2 + \ \tau_{X_3X_4}\ ^2$
Residual	1	ξ_2
X_3	1	$\xi_3 + \ \tau_{X_3}\ ^2$
X_1X_4	1	$\xi_3 + \ \tau_{X_1X_4}\ ^2$
Residual	1	ξ_3
X_4	1	$\xi_4 + \ \tau_{X_4}\ ^2$
X_1X_2	1	$\xi_4 + \ \tau_{X_1X_2}\ ^2$
Residual	1	ξ_4
X_1X_3	1	$\xi_5 + \ \tau_{X_1X_3}\ ^2$
X_2X_4	1	$\xi_5 + \ \tau_{X_2X_4}\ ^2$
Residual	1	ξ_5

40

More factors in 4 steps

Table 6. Aliasing Structure for 2^{8-4} Design (using Table 5 grouping)

Design generators	Effects with the same standard error as X_3
$X_5 = X_1X_2X_3$ $X_6 = X_2X_3X_4$	X_7
$X_7 = X_1X_3X_4$ $X_8 = X_1X_2X_4$	$X_3X_7 = X_1X_4 = X_2X_8 = X_5X_6$
Effects with the same standard error as X_1	Effects with the same standard error as X_4
X_5 $X_1X_5 = X_2X_3 = X_4X_6 = X_7X_8$	X_8 $X_1X_2 = X_3X_5 = X_4X_6 = X_6X_7$
Effects with the same standard error as X_2	Effects orthogonal to sublots
X_6 $X_2X_6 = X_3X_4 = X_1X_7 = X_5X_8$	$X_1X_3 = X_2X_5 = X_4X_7 = X_6X_8$ $X_1X_6 = X_2X_7 = X_3X_8 = X_4X_5$ $X_1X_8 = X_2X_4 = X_3X_6 = X_5X_7$

- If we would like to accommodate two factors in one or more steps
- $2^{5-1}, 2^{6-2}, 2^{7-3}, 2^{8-4}$ fractional factorial designs

41

Five factors in five steps

- 2^{5-1} fractional factorial design

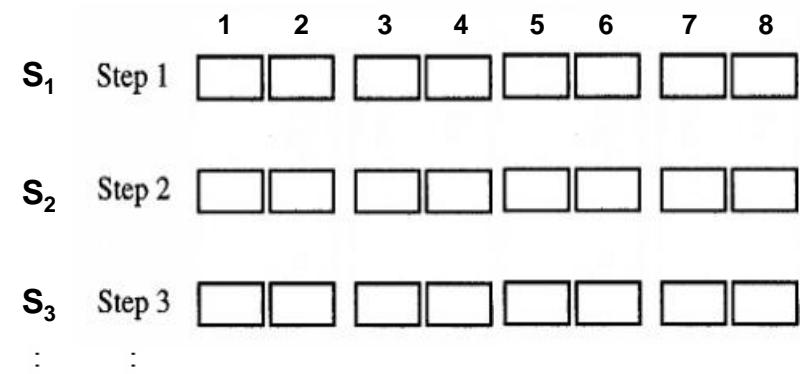

$$X_5 = X_1X_2X_3X_4$$

Table 5. Five Disjoint Groups of Three Contrasts for a 2^4

Group	Two independent contrasts	Generalized interaction
1	X_1	X_2X_3
2	X_2	X_3X_4
3	X_3	X_1X_4
4	X_4	X_1X_2
5	X_1X_3	X_2X_4

42

64-wafer split-lot design:

43

44

Two 9-disjoint groups

Table 7. Nine Disjoint Groups of Seven Contrasts for a $2^6 = 64$ -Walter Experiment

Group	Three independent contrasts			Four generalized interactions		
	Solution A			Solution B		
1	X_1	$X_5 X_6$	$X_2 X_3 X_6$	$X_1 X_5 X_6$	$X_2 X_3 X_6$	$X_1 X_5 X_6 X_6$
2	X_2	$X_1 X_6$	$X_3 X_4 X_6$	$X_1 X_2 X_6$	$X_1 X_3 X_4$	$X_1 X_2 X_6 X_6$
3	X_3	$X_1 X_2$	$X_1 X_4 X_6$	$X_2 X_4 X_6$	$X_1 X_3 X_4 X_6$	$X_2 X_3 X_6 X_6$
4	X_4	$X_2 X_3$	$X_2 X_5 X_6$	$X_2 X_3 X_4$	$X_3 X_5 X_6$	$X_3 X_4 X_5 X_6$
5	X_5	$X_3 X_4$	$X_1 X_3 X_6$	$X_3 X_4 X_5$	$X_1 X_4 X_6$	$X_1 X_3 X_6 X_6$
6	X_6	$X_4 X_5$	$X_1 X_2 X_4$	$X_4 X_6 X_6$	$X_1 X_2 X_5$	$X_1 X_2 X_6 X_6$
7	$X_2 X_4$	$X_2 X_6$	$X_1 X_3 X_6$	$X_4 X_6$	$X_1 X_2 X_3 X_6$	$X_1 X_3 X_5 X_6$
8	$X_1 X_3$	$X_2 X_5$	$X_2 X_4 X_6$	$X_1 X_5$	$X_2 X_3 X_4 X_6$	$X_1 X_2 X_5 X_6$
9	$X_1 X_4$	$X_2 X_5$	$X_3 X_6$	$X_1 X_2 X_4 X_5$	$X_2 X_3 X_6 X_6$	$X_1 X_2 X_3 X_4 X_5 X_6$

JMP software (1997)

45

Solution B: S_i decision

$$\begin{aligned}
 S_1 &= 4.5 + .5X_1 + X_2 X_4 + 2X_3 X_6 \\
 S_2 &= 4.5 + .5X_2 + X_1 X_6 + 2X_3 X_5 \\
 S_3 &= 4.5 + .5X_3 + X_2 X_6 + 2X_4 X_5 \\
 S_4 &= 4.5 + .5X_4 + X_1 X_3 + 2X_2 X_5 \\
 S_5 &= 4.5 + .5X_5 + X_1 X_2 + 2X_4 X_6 \\
 S_6 &= 4.5 + .5X_6 + X_1 X_5 + 2X_3 X_4 \\
 S_7 &= 4.5 + .5X_7 + X_1 X_4 + 2X_2 X_3 \\
 S_8 &= 4.5 + .5X_8 + X_1 X_3 X_5 + 2X_2 X_5 X_6 \\
 S_9 &= 4.5 + .5X_9 + X_1 X_2 X_3 + 2X_1 X_4 X_5.
 \end{aligned}$$

9 factors in 9 steps (2^{9-3} design)

Table 9. Aliasing Structure for JMP's 2^{9-3} Design (with Solution B contrast grouping from Table 7)

Defining relation: $I = X_1 X_2 X_3 X_6$		Effects with the same standard error as X_5	
$= X_2 X_3 X_6 X_9$		$X_1 X_2 = X_7 X_9 = X_6 X_8 X_9$	
$= X_1 X_2 X_5 X_9$		$X_3 X_7 = X_4 X_9$	
$= X_2 X_4 X_6 X_9$		$X_5 X_8 = X_3 X_9$	
$= X_6 X_7 X_8 X_9$		$X_4 X_5 = X_2 X_9$	
$= X_1 X_2 X_3 X_6 X_9$		$X_6 X_9 = X_1 X_2 X_5 = X_5 X_7 X_8$	
$= X_1 X_2 X_3 X_6 X_7$		$X_3 X_8 X_7 = X_4 X_5 X_9$	
Effects with the same standard error as $X_1 = X_2 X_7 X_6$		Effects with the same standard error as X_6	
$X_6 X_9$		$X_1 X_5 = X_2 X_9 X_6$	
$X_2 X_9 = X_4 X_5 X_6$		$X_1 X_6 = X_2 X_7 X_6$	
$X_3 X_7 = X_6 X_9$		$X_2 X_9 = X_1 X_5 X_6$	
$X_1 X_2 X_4 = X_3 X_8 X_9 = X_4 X_7 X_6$		$X_3 X_8 = X_5 X_6 X_9 = X_6 X_7 X_9$	
$X_1 X_3 X_5 = X_2 X_6 X_9$		$X_4 X_6 = X_3 X_9 = X_6 X_7 X_9$	
$X_1 X_5 X_7 = X_2 X_9 X_6$		$X_5 X_9 = X_1 X_6 X_7 = X_2 X_4 X_9$	
Effects with the same standard error as $X_2 = X_1 X_7 X_6$		Effects with the same standard error as $X_7 = X_1 X_2 X_8 = X_3 X_4 X_9$	
$X_1 X_6 = X_2 X_5 X_9$		$X_1 X_4 = X_2 X_3 X_9$	
$X_3 X_8 = X_2 X_6 X_9$		$X_2 X_5 = X_1 X_7 X_6 = X_3 X_4 X_9$	
$X_5 X_9 = X_4 X_7 X_9$		$X_6 X_6 = X_5 X_6 X_7 = X_7 X_8 X_9$	
$X_6 X_9 = X_1 X_5 X_6 = X_6 X_7 X_8$		$X_7 X_8 = X_2 X_3 X_7 = X_2 X_4 X_9$	
$X_1 X_4 X_6 = X_2 X_5 X_9 = X_2 X_6 X_7$		$X_1 X_3 X_9 = X_1 X_4 X_7 = X_2 X_4 X_9$	
$X_2 X_5 X_6$			
Effects with the same standard error as $X_3 = X_4 X_7 X_9$		Effects with the same standard error as $X_8 = X_1 X_2 X_7$	
$X_1 X_7 = X_2 X_6 X_9$		$X_1 X_9 = X_2 X_5 X_6$	
$X_2 X_6 = X_1 X_5 X_9$		$X_1 X_5 = X_2 X_9$	
$X_4 X_8 = X_2 X_6 X_9$		$X_1 X_6 = X_2 X_7 X_9$	
$X_6 X_9 = X_3 X_5 X_6 = X_5 X_7 X_9$		$X_2 X_5 X_6 = X_2 X_3 X_7 = X_2 X_4 X_9$	
$X_1 X_3 X_7 = X_1 X_4 X_6 = X_2 X_3 X_8$		$X_3 X_8 = X_4 X_6 X_9$	
$X_2 X_5 X_6$			
Effects with the same standard error as $X_4 = X_3 X_7 X_9$		Effects with the same standard error as $X_9 = X_3 X_4 X_7$	
$X_1 X_3$		$X_1 X_9 = X_2 X_5 X_6$	
$X_2 X_5 = X_1 X_6 X_9$		$X_1 X_2 X_3 = X_2 X_6 X_9$	
$X_6 X_7 = X_1 X_5 X_9$		$X_1 X_3 X_5 = X_2 X_6 X_9$	
$X_1 X_2 X_4 = X_1 X_7 X_9 = X_2 X_6 X_9$		$X_1 X_6 X_7 = X_2 X_3 X_7$	
$X_2 X_4 X_6$		$X_1 X_6 X_7 = X_2 X_6 X_9$	
$X_3 X_6 X_9 = X_4 X_6 X_7$			

47

Table 10. Symmetric Split-Lot Design Based on Table 9

Walter	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9
1	1	2	1	5	4	8	2	5	3
2	3	1	2	3	7	2	3	8	7
3	1	3	4	6	3	5	2	4	8
4	3	4	1	6	5	3	7	1	5
5	1	5	1	8	2	4	6	6	4
6	1	6	7	3	1	8	4	1	5
7	1	7	8	2	4	5	1	5	3
8	1	8	2	5	6	1	7	2	6
9	2	1	4	8	1	5	3	2	1
10	2	2	6	3	7	1	5	5	6
11	2	3	5	2	6	4	8	1	7
12	2	4	3	5	4	8	2	6	5
13	2	5	4	8	2	7	3	7	6
14	2	6	2	7	8	3	6	4	5
15	2	7	1	5	6	2	7	8	4
16	2	8	7	1	3	6	1	3	5
17	3	1	1	3	8	4	6	8	6
18	3	2	7	8	6	2	5	3	5
19	3	3	8	5	7	3	5	3	4
20	3	4	2	2	1	7	5	8	5
21	3	5	5	7	3	8	7	3	1
22	3	6	3	4	5	4	1	2	6
23	3	7	4	1	8	1	4	6	2
24	3	8	6	2	5	6	7	1	2
25	4	1	8	7	5	1	2	1	5
26	4	2	3	4	5	8	6	0	4
27	4	3	1	2	1	6	5	3	6
28	4	4	7	1	6	4	3	2	5
29	4	5	4	3	3	6	3	1	6
30	4	6	6	8	4	7	3	3	2
31	4	7	5	5	1	6	7	2	8
32	4	8	3	7	2	4	4	1	1
33	5	1	2	6	7	8	1	7	2
34	5	2	8	1	4	7	2	4	3
35	5	3	7	4	2	1	6	8	1
36	5	4	6	1	7	6	2	5	6
37	5	5	6	2	8	6	2	4	4
38	5	6	4	5	2	2	8	5	5
39	5	7	2	4	8	3	5	6	0
40	5	8	5	3	7	3	1	3	3
41	6	1	7	2	2	3	7	6	8
42	6	2	1	5	8	7	1	1	5
43	6	3	3	2	8	5	4	5	2
44	6	4	4	8	3	5	2	6	7
45	6	5	3	6	1	8	3	3	4
46	6	6	5	5	1	7	5	8	6
47	6	7	6	4	4	6	3	4	4
48	6	8	4	7	4	5	7	2	5
49	7	1	2	5	3	6	4	8	3
50	7	2	4	5	2	5	8	6	6
51	7	3	3	5	3	8	5	7	5
52	7	4	4	6	8	2	1	4	4
53	7	5	5	2	1	4	2	3	1
54	7	6	6	8	7	6	5	6	1
55	7	7	7	9	7	7	8	2	2
56	7	8	1	4	1	3	2	5	7
57	8	2	3	6	7	6	5	4	4
58	8	3	5	7	1	2	4	2	5
59	8	4	4	8	1	6	3	6	6
60	8	5	5	4	4	5	7	7	7
61	8	6	6	5	5	5	4	4	7
62	8	7	7	2	3	2	3	7	2
63	8	8	8	3	2	4	2	3	1
64	8	9	9	8	8	8	8	8	8

(cont.)

Table 8. Aliasing Structure for Minimum Aberration 2^{9-3} Design (with Solution A grouping from Table 7)

Defining relation: $I = X_5 X_6 X_7 X_8$	Effects with the same standard error as $X_5 = X_6 X_7 X_8$
$= X_2 X_3 X_4 X_9$	$X_3 X_4$
$= X_1 X_4 X_6 X_9$	$X_7 X_9 = X_1 X_4 X_6 = X_2 X_9 X_8$
$= X_1 X_4 X_5 X_9$	$X_3 X_4 X_5 = X_1 X_2 X_7$
$= X_2 X_5 X_7 X_9$	$X_1 X_3 X_6 = X_2 X_4 X_8$
$= X_1 X_2 X_3 X_7 X_8$	$X_6 X_7 X_8 = X_6 X_8 X_9$
$= X_1 X_2 X_3 X_4 X_8$	$X_1 X_2 X_3$
Effects with the same standard error as X_1	
$X_5 X_6 = X_2 X_8 = X_2 X_3 X_9$	
$X_6 X_8 = X_1 X_5 X_9 = X_1 X_2 X_7$	
$X_5 X_9 = X_2 X_3 X_8 = X_1 X_4 X_6$	
$X_4 X_5 = X_1 X_6 X_9$	
$X_4 X_6 = X_1 X_7 X_9$	
$X_1 X_5 X_6 = X_1 X_7 X_8$	
Effects with the same standard error as X_2	
$X_1 X_6 = X_4 X_7 X_9$	Effects with the same standard error as $X_7 = X_5 X_6 X_8$
$X_1 X_8 = X_1 X_2 X_6$	$X_2 X_5 = X_1 X_8 X_9$
$X_2 X_6 = X_1 X_7$	$X_3 X_6 = X_2 X_7 X_9$
$X_1 X_2 X_6 = X_1 X_4 X_9$	$X_4 X_5 X_6 = X_4 X_7 X_8$
$X_1 X_3 X_6 = X_1 X_9 X_8$	$X_1 X_2 X_4 = X_3 X_5 X_7 = X_3 X_6 X_8$
$X_1 X_5 X_6 = X_2 X_3 X_7 = X_2 X_6 X_8$	$X_1 X_2 X_5 = X_3 X_4 X_7$
Effects with the same standard error as X_3	$X_2 X_6 X_7 = X_2 X_5 X_8$
$X_1 X_2 = X_4 X_6 X_9$	
$X_2 X_6 = X_1 X_5 X_9$	
$X_1 X_9 = X_1 X_2 X_7 = X_2 X_3 X_7$	
$X_1 X_2 X_9 = X_1 X_5 X_7 = X_1 X_6 X_8$	
$X_2 X_3 X_9 = X_1 X_7 X_7$	
Effects with the same standard error as X_4	
$X_2 X_5 = X_2 X_6 X_9 = X_1 X_8 X_9$	Effects with the same standard error as X_9
$X_2 X_9 = X_3 X_5 X_8 = X_3 X_7 X_8$	$X_5 X_7 = X_5 X_8 X_9 = X_1 X_4 X_9$
$X_3 X_9 = X_2 X_5 X_8 = X_2 X_7 X_8$	$X_1 X_4 = X_6 X_7 X_8 = X_6 X_8 X_9$
$X_2 X_3 X_4 = X_1 X_6 X_7 = X_1 X_6 X_8$	$X_2 X_5 = X_3 X_6 X_9$
$X_3 X_4 X_9$	$X_3 X_6 = X_2 X_5 X_9$
$X_2 X_4 X_9$	$X_1 X_7 = X_6 X_8 X_9$
	$X_2 X_6 = X_3 X_7 X_9$

49

Extensions (64 wafers)

- 9 factors in 9 steps (2^{9-3} design)
- 8 factors in 8 steps (2^{8-2} design)
- 7 factors in 7 steps (2^{7-1} design)
- 6 factors in 6 steps (2^6 design)
- Other possibilities

50

Outline

- Introduction
 - two different designs
- Constructing 16-wafer experiments
- Symmetric split-lot designs for 64-wafer experiments
- Discussions

Other important split-plot design

- Split-plot design for 3-level factors
 - 3^4 of 3^{k-p} factorials in 81-wafers
- Split-plot designs of size 27
- Split-plot designs of size 32

Future research

- three or four experimental stages, with many factors per stage [the case of two stages was addressed by Miller (1997)]
- asymmetric split-lot designs—that is, those in which the subplot size differs from one experimental step to the next

53

(cont.)

- mixed-level factorials and designs for fitting second order models
- designs that can check for lack of fit of our assumed model—for example, that could detect existence of additional variance components associated with wafers having two sublots in common

54

Thank you all

55