

Minimum-Aberration Two-Level Fractional Factorial Split-Plot Designs

Derek BINGHAM and Randy R. SITTER

指導教授：鄭少為老師

學生：張明中

Structures of the Designs

■ Treatment structure : Fractional Factorial

Because the restriction of the resource

■ Plot Structure : Split Plot

Because some factors are hard to change

Outline

- Two-level Factorial Split-plot Designs
- Minimum Aberration FFSP Designs
- Catalog of Designs
- Search Algorithms
- Testing for Design Isomorphism
- Other Applications of the Combined Approach
- Example with Design Key

Introduction with a Example

Example 1. Suppose we wish to perform an experiment to identify factors that will improve the efficiency of a ball mill. Engineers have identified seven potential factors, each at two levels:

- A. Motor speed
- B. Feed mode
- C. Feed sizing
- D. Material type

→ Hard to change

- P. Gain
- Q. Screen angle
- R. Screen vibration level

$$2^{7-3} = 2^{(4+3)-(1+2)}$$

$$\begin{aligned} D &= ABC \\ Q &= P, R = P \end{aligned}$$

Assignment of Factors

- Defining contrast subgroup :
 $I=ABCD=PQ=PR=ABCDPQ=ABCDPR=QR=ABCDQR$
- Resolution=2
- Better FFSP designs can be constructed using WP factors in the SP fractional generators :

C=AB
 Q=DP, R=AP

$I=ABC=DPQ=APR=ABCDPQ=BCPR=ADQR=BCDQR$

Definition of Minimum Aberration

Definition 1: Minimum Aberration Fractional Factorial Split-Plot. Let $A_i(D)$ denote the number of words of length i in the defining contrast subgroup of an FFSP design, D , and let $A(D) = (A_1(D), A_2(D), \dots, A_{k_1+k_2}(D))$ be the word-length pattern (WLP) for the FFSP design. Suppose that D_1 and D_2 are $2^{(k_1+k_2)-(p_1+p_2)}$ FFSP designs. Let r be the smallest i such that $A_i(D_1) \neq A_i(D_2)$. Then D_1 is said to have less aberration than D_2 if $A_r(D_1) < A_r(D_2)$. If no such i exists, then D_1 and D_2 have equal aberration. A design is said to be MA if no other design has less aberration.

Method of HCV

- Huang, Chen, and Voelkel presented a clever method of decomposing FF designs into FFSP designs.
- Their method falls short of yielding a systematic method for generating all FFSP designs.

Remark

- Not all MA FF designs can be decomposed into FFSP designs.

MA 2^{7-3} FF is resolution IV.

But MA $2^{(3+4)-(1+2)}$ FFSP is resolution III

Catalog of Designs

Table 2. Catalog of Minimum Aberration 16-Run FFSP Designs

k	Design	Columns (WF)	Columns (SF)	WLP
4	1.4.4		16	0.11
5	2.3.7		16	0.11
6	3.2.7		15	0.11
7	1.5.5	2.11		0.5
8	2.4.2	2.11		0.2
9	2.4.6	7.10		0.5
10	3.3.2	1.13		0.5
11	2.2.1.1	3	13	1.11
12	4.2.1.1	7	11	0.5

Table 3. Matrix for 8-run and 15-run Designs

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	3	1	4	1	0	5	0	1	6	1	0	1		
1	3	1	4	1	0	5	0	1	6	1	0	1		
0	1	1	3	0	1	1	0	0	0	1	1			
0	0	0	1	1	1	0	0	0	1	1	1	1		
0	0	0	0	0	0	1	1	1	1	1	1	1	1	

NOTE: The designated columns are 17 columns in 3 runs and 1, 2, 4, and 6. The 8-run designs are from 1-3 and the 15-run designs are from 1-15.

Remark

- Number of FFSP designs is larger than in the FF case.
- The catalog do not list MA designs of the form $2^{(k_1+k_2)-(p_1+0)}$.
- This catalog is better than HCV's because it shows that how the factors be assigned.

How to use the tables?

- Consider the MA $2^{(3+3)-(1+1)}$ design.

Table 2. Catalog of Minimum Aberration 16-Run FFSP Designs

k	Design	Columns (WF)	Columns (SF)	WLP
6	3.3.1.1	8	16	1.11

Table 3. Matrix for 8-run and 16-run Designs

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A	1	0	1	3	1	3	1	0	1	3	1	0	1	C
B	0	1	1	2	0	1	1	0	0	1	1	0	0	1
P	2	0	0	1	1	1	0	0	0	2	0	1	1	1
Q	0	0	2	0	0	3	0	1	1	1	1	1	1	1

NOTE: The designated columns are 18 columns in 3 runs and numbered 1, 2, 4, and 6. This Run design are from 1-3 and the 16-run designs are from 1-16.

$$C=AB, R=APQ \quad \Rightarrow \quad I=ABC=APQR=BCPQR$$

Definition of Isomorphism

Consider two $2^{(k_1+k_2)-(p_1+p_2)}$ FFSP designs, $D1$ and $D2$. Two designs are said to be *isomorphic* if we can obtain $D1$ from $D2$ by relabeling the factors of $D2$. As noted by Chen et al. (1993), isomorphic designs are essentially the same, so it is sufficient to include only one of them in a catalog of designs.

The method of this Paper

- Combined two methods to obtain a more efficient search algorithm:
 1. A search-table approach (Franklin,Baily 1977)
 2. A sequential approach (Chen,J.,Sun,D.X.,Wu,C.F.J 1993)
- Two main features:
 1. The search table eliminates many generators from the search.
 2. At each step we keep only nonisomorphism designs.

A example

Let A, B, C, D, and E be the WP factors and P, Q, R, and S be the SP factors. Because of resource constraints, a 16 run $2^{(5+4)-(2+3)}$ FFSP design is desired. Without loss of generality, let D, E, Q, R, and S be the added factors and A, B, C, and P be the basic factors. Consider the constructed search table (Table 4).

Table 4. Search Table					
	E	D	P	Q	R
AB	ABD	ABE	—	—	—
AC	ACD	ACE	—	—	—
BC	BID	BDF	—	—	—
ABC	ABCD	ABCE	—	—	—
AD	—	—	APD	APR	APS
BD	—	—	BPD	BPR	BPS
CD	—	—	CQD	CPR	CPS
ABP	—	—	ABPD	ABPR	ABPS
ACP	—	—	ACPD	ACP	ACPS
BCP	—	—	BCPD	BCPR	BCPS
ADCP	—	—	ADCPD	ADCP	ADCP

$$I = ABD = ACE = APQ = BPR = CPS$$

A Search-Table Approach

- In a $2^{(k_1+k_2)-(p_1+p_2)}$ design, we refer to
 - p_1 factors are WP added factors
 - p_2 factors are SP added factors
 - (k_1-p_1) factors are WP basic factors
 - (k_2-p_2) factors are SP basic factors

The table has $2^{(k_1+k_2)-(p_1+p_2)} - (k_1-p_1) - (k_2-p_2) - 1$ rows and $p_1 + p_2$ columns.

How many designs?

- There are $N_1 \times N_2$ designs in the table, where

$$N_1 = [2^{k_1-p_1} - (k_1 - p_1) - 1]^{p_1}$$

$$N_2 = \{2^{(k_1+k_2)-(p_1+p_2)} - [(k_1 + k_2) - (p_1 + p_2)] - [2^{k_1-p_1} - (k_1 - p_1) - 1] - 1\}^{p_2}$$
- Franklin noted that selecting from the same row would form designs with resolution less than 3.

AB	NBD	ABE	—	—	—
AC	ACD	ACE	—	—	—
BC	BCD	BCE	—	—	—
ABC	ABCD	ABCF	—	—	—
AF	—	—	APD	APR	APS
BP	—	—	(NPQ)	BPR	BPS
CP	—	—	CQD	CPR	CPS

A Reduction

- We could reduce the number of designs to

$N'_1 \times N'_2$, where

$$N'_1 = \prod_{i=1}^{p_1} [2^{k_1-p_1} - (k_1 - p_1) - i]$$

$$N'_2 = \prod_{j=1}^{p_2} \{2^{(k_1+k_2)-(p_1+p_2)} - [(k_1+k_2)-(p_1+p_2)] - [2^{k_1-p_1} - (k_1 - p_1) - 1] - j\}$$

- This method becomes impractical especially when the run size is large.

A Sequential Approach

Let D_{n_1, n_2, m_1, m_2} be the set of all nonisomorphic $2^{(n_1+n_2)-(m_1+m_2)}$ FFSP designs with resolution $\geq III$.

Searching for WP designs \equiv Searching for $2^{n_1-m_1}$ FF designs

1. $D_{n_1, 0, m_1, 0} \Rightarrow D_{n_1+1, 0, m_1+1, 0}$ by assigning the next factor to an unused column.
There are $[2^{n_1-m_1} - (n_1 - m_1) - 1] - m_1$ columns available.
2. $D_{n_1+1, 0, m_1+1, 0} \Rightarrow D_{n_1+1, 0, m_1+1, 0}$ by removing designs with resolution III and isomorphism.
3. Keep doing until $D_{k_1, 0, p_1, 0}$.
4. Use the same procedure to construct D_{k_1, k_2, p_1, p_2} .

The Combined Approach

- The outline of the algorithm is :

 1. Preliminaries
 2. Finding nonisomorphic WP designs
 3. Finding nonisomorphic FFSP designs

- A more detailed version was given by

Bingham,D.(1998)

“Design and Analysis of Fractional Factorial Split-Plot Designs”

Finding Nonisomorphic WP Designs

1. Creat $D_{k_1-p_1+1, 0, 1, 0}$ by selecting all length nonisomorphic WP words in the first column.
2. Creat $D_{k_1-p_1+2, 0, 2, 0}$ by selecting a design in $D_{k_1-p_1+1, 0, 1, 0}$ and adding generators from the second column.
3. Remove isomorphic design and go on until $D_{k_1, 0, p_1, 0}$.

Finding Nonisomorphic FFSP Designs

1. Begin with $D_{k_1,0,p_1,0}$ and use this to construct $D_{k_1,k_2-p_2+1,p_1,1}$.
2. Create $D_{k_1,k_2-p_2+2,p_1,2}$ by selecting a design in $D_{k_1,k_2-p_2+1,p_1,1}$ and adding generators from the second SP column.
3. Remove isomorphic design and go on until D_{k_1,k_2,p_1,p_2} .

2. Construct $D_{5,2,2,1}$ from $D_{5,0,2,0}$:

- (i) Choose $g_3 = APQ$ and add it to $D_{5,2,2,1}$.
- (ii) Choose $g_3 = BPQ$ and compare with $\{(ABD, ACE, APQ)\}$.
- (iii) The WLP are different. One is $(0,0,3,3,0,0,1)$ and another is $(0,0,3,2,1,1,0)$. So they are nonisomorphic. Add it into $D_{5,2,2,1}$.

3. Similary, we create $D_{5,3,2,2}$ and $D_{5,4,2,3}$ in this way.

	D	E	a
AB	ABD	ABE	—
AC	ACD	ACE	—
BC	BCD	BCE	—
ABC	ABCD	ABCE	—
AP	—	—	APQ
BP	—	—	BPC
CP	—	—	CPO
ABP	—	—	ABPO
ACP	—	—	ACPO
BCP	—	—	BCPO
ACP	—	—	ABCPQ

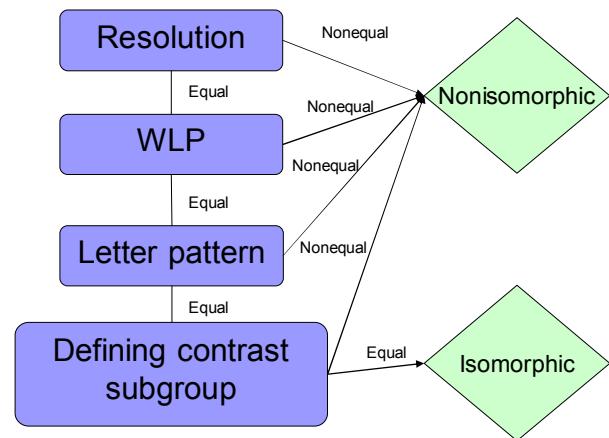
A Example

Suppose we wish to construct $D_{5,4,2,3}$:

1. Use $D_{4,0,1,0} = \{(ABD), (ABCD)\}$ to construct $D_{5,0,2,0}$.
 - (i) If we select generator $g_1 = ABD$. Then the first generator in the second column is $g_2 = ACE$ and add it to $D_{5,0,2,0}$.
 - (ii) Move down column 2 and consider $g_2 = BCE$. Then $\{(ABD, BCE)\}$ is isomorphic to $\{(ABD, ACE)\}$. So we discarded it.
 - (iii) Do the same procedure and try $g_1 = ABCD$. Finally we get $D_{5,0,2,0} = \{(ABD, ACE), (ABD, ABCE)\}$.

D	E
AB	ABD
AC	ACD
BC	BCD
ABC	ABCD
	ABCE

Testing isomorphism



Other Application

- Fractional factorial designs
- q-level fractional factorial designs
- q-level fractional factorial split plot designs

q-Level Fractional Factorial Designs

Example 5. Consider a 3^{4-2} FF design with factors A, B, C, and D. The corresponding search table is shown in Table 6. Notice that the header for each row is a generalized interaction between the factorial effects of the basic factors.

Table 6. Search Table

	C	D
AB	ABC	ABD
A^2B	A^2BC	A^2BD
AB^2	AB^2C	AB^2D
A^2B^2	A^2B^2C	A^2B^2D

$$I = ABC = A^2B^2C^2 = A^2BD = AB^2D^2 = B^2CD = A^2CD = AC^2D^2 = BC^2D^2$$

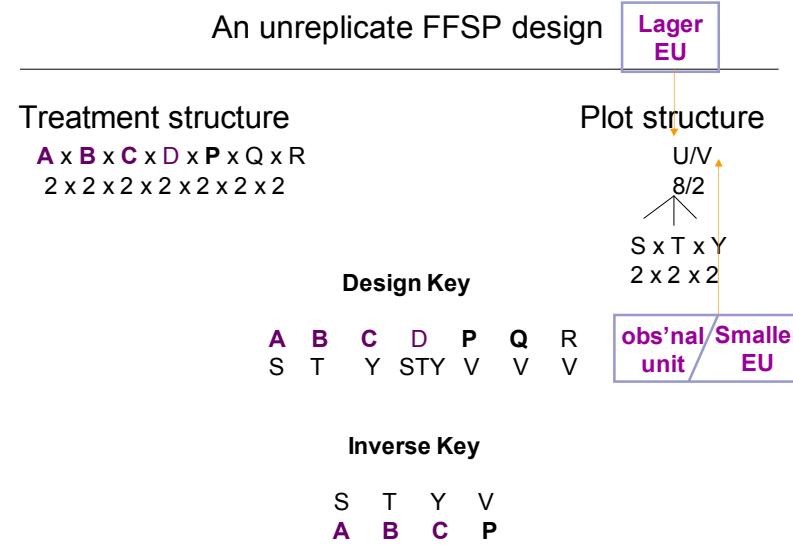
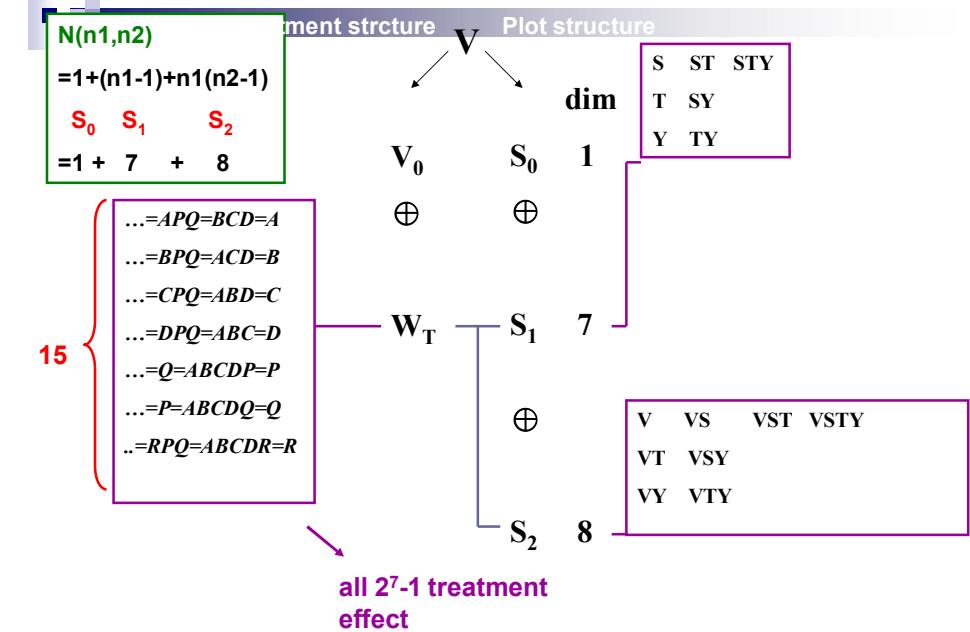
Example with Design Key

Example 1. Suppose we wish to perform an experiment to identify factors that will improve the efficiency of a ball mill. Engineers have identified seven potential factors, each at two levels:

- A. Motor speed
- B. Feed mode
- C. Feed sizing
- D. Material type
- P. Gain
- Q. Screen angle
- R. Screen vibration level

Restrictions and Plan

- Restrictions on the allocation of treatments to plots :
Treatment main factors can confounded with some of sub-plot effects, but cannot confounded with whole-plot effects.
- Plan and the restrictions on randomization:
Apply treatment A,B,C,D to larger experimental unit.
Apply treatment P,Q,R to each whole-plot as completely randomized design.



Confounded Sets

$I = ABCD = PQ = PR = ABCDPQ = ABCDPR = QR = ABCDQR$
 $A = BCD = APQ = APR = BCDPQ = BCDPR = AQR = BCDQR = S$
 $B = ACD = BPQ = BPR = ACDPQ = ACDPR = BQR = ACDQR = T$
 $C = ABD = CPQ = CPR = ABDPQ = ABDPR = AQR = ABDQR = Y$
 $D = ABC = DPQ = DPR = ABCPQ = ABCPR = DQR = ABCQR = STY$
 $P = ABCDP = Q = R = ABCDQ = ABCDR = PQR = ABCDPQR = V$
 $Q = ABCDQ = P = PQR = ABCDP = ABCDPQR = R = ABCDR = V$
 $R = ABCDR = PQR = P = ABCDPQR = ABCDP = Q = ABCDQ = V$
 \cdot
 \cdot
 \cdot

ANOVA table

stratum	Source	d.f.	S.S.	M.S.
S_0	mean	1	$\frac{\text{sum}^2}{16}$	$\ \tau_0\ ^2 + \xi_0$
S_1	A,B,C,AB,BC, AC,D	7	$SS(\cdot)$	$\frac{1}{7}\ \tau_w\ ^2 + \xi_1$
S_2	P,AP,BP,CP, ABP,BCP,ACP, DP	8	$SS(\cdot)$	$\frac{1}{8}\ \tau_s\ ^2 + \xi_2$
Total		16	$\sum_i y_i^2$	

Thanks For Your Attention