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Frequentist Analysis Strategy for Complex Aliasing

e Some properties of Method II (cont.)

— The constraint imposed by effect heredity substantially reduces the

model space searched in Method II.

+ Consider, the 12-run PBD with 11 factors and #=4 in Method 1.

* The total number of main effects and two-factor interactions is
11+ (Y) = 66.

* The total number of models with five terms (and the intercept) is
(%) = 720,720.

x There are 15,510 models satisfying the effect heredity requirement.
This 1s about 2.2% of the total number of models.

— As the number of factors and / increase, the search will become
computationally prohibitive. An alternative is to use an efficient
stochastic search such as the Bayesian variable selection.

+ Reading: textbook, 9.4
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Analysis of Cast Fatigure Experiment
o The design is an OA(12,27).

e Consider the main-effect-only model.
— The 11 columns in Table 1 are mutually orthogonal.

— The main effect estimates are uncorrelated and unbiased estimates of the
main effects if there are no interactions.

— Half-normal plot:
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Figure 1: Half-normal plot, cast fatigure experiment

+ The model with F alone has an R* = 0.45.
+ The model (F,D) has an R? = 0.59, and the fitted model is

$=15.73+0.458F —0.258D.




Analysis of Cast Fatigure Experiment

e Entertain a model with ME F and all the interactions involving F.
— Identify a significant F'G interaction.
— The model (F,FG) has an R> = 0.89
— The model (D, F,FG) has an R?> = 0.92 = D appears not significant

— The model for predicted fatigue lifetimes is
v=35.7+0458F —0.459FG,
x Set (F,G) = (+,—). The predicted life is
5.7+0.458 —0.459(—1) =5.740.92 = 6.62.

«x Compared to the average lifetimes (=5.7), it has a 16% increase
(=0.92/5.7)
* Compared to (F,G) = (—,—), it has a 38% increase (=1.84/4.78)
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— The potential for a dramatic improvement would not have been possible

without discovering the F'G interaction.

Analysis of Cast Fatigure Experiment

in further steps.

Method II also identifies model (F, FG) using h = 2.

each of which contains F and FG.

The original analysis used main-effect-only model and

— 1dentified the F" and D as significant,

— noted a discrepancy between the findings and previous work, i.e., the

sign of D effect was reversed,
— concluded that the possible cause was an interaction DE,
— claimed that the design did not generate enough information to

determine DE.

e Because the DE interaction is orthogonal to both D and £ main effects,
these three effect estimates are uncorrelated and therefore the DE
interaction does not affect the sign of the factor D main effect.
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Using Method I, the model (F, FG) is found in Step 1 and does not change

For larger & (say, 3 or 4), Method 11 identifies multiple good fitting models,
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Analysis of Cast Fatigure Experiment
e The design’s aliasing patterns can be used to explain this apparent reversal.

Table 9: Estimates and Alias Patterns, Cast Fatigue Experiment

Estimated Alias
Effect Effect Pattern

A 0.326 | A— 3FG
B 0.294 | B—1FG
C —0.246 | C+3FG
D —0.516 | D+ 1FG
E 0.150 | E—3FG
F 0915 | F

G 0.183 | G

8 0446 | —1FG
9 0453 | —1FG
10 0.081 | —1FG
11 ~0242 |  +3FG
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Analysis of Cast Fatigure Experiment

The D estimate can be adjusted as follows:
A 1~
D — §FG = —0.516 — (—0.306) = —0.210.
A 95% confidence interval for D, (—0.526, 0.106)=(—0.210£0.316), shows

that a positive D main effect is possible.

The magnitude of the estimated effects of A, B and C can be explained from
Table 9 by an F G interaction; i.e.,

l ~ 1~ 1~

(~3FG.~3FG.5FG) = (0.306,0.306,~0.306)

are close to their estimates, 0.326, 0.294 and —0.246, respectively.

The effects A-E and 8-11 have the same sign as their F'G aliases, which lend
further support to the existence of a significant F'G interaction.
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Bayesian Analysis Strategy for Complex Aliasing

e The Methods I and II work well if

— the models under search are restricted to have a small number of terms,
and

— the number of candidated terms to choose from is moderate.
e As the number of candidate terms to choose from and/or the number of
terms allowed in the model increases,

— the search over the model space is too incomplete for Method I to be
effective, and

— the required computations for Method IT become prohibitively expensive
even with the help of effect heredity to reduce the number of models.
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Bayesian Analysis Strategy for Complex Aliasing

e Bayesian framework:

— Let y denote the data, and 8 denote the the vector of parameters. Both

are random variables.
— f(y|0): the likelihood of y given 6
— 7(0): the prior distribution for .

— The posterior distribution for 9 is:

m(6ly) = £(410)7(0)/ [ f(vIe)m
— Using the posterior distribution, inference about 6 can then be made.

e Parameters 0 = (B, 5,0?)
— B:a(k+ 1) vector containing the intercept and factorial effects,

— &: a (k+ 1) vector of 0’s and 1’s indicating the significance of the effects

2

— O“: error variance in the linear model




Bayesian Analysis Strategy for Complex Aliasing
e Assignment of distributions

- y| B,90, 62: a linear model structure
y=Xp +Eg,

where X is the N x (k + 1) model matrix, and € ~ MN(0,6%Iy.y).

— B|8,6%: normal mixture prior

N(0,6°7%) ifd =0

n(Bi|8;,0%) = . —
N(O,G (CiTi) ) if 5,' =1

x When 9; = 0, the constant T; needs to be specified so that B; is tightly
centered around 0 and therefore does not have a large effect.

x The constant ¢; needs to be chosen with ¢; > 1 to indicate the
possibility of a large 3; when 6; = 1.

x The constants T; and ¢; should be chosen to represent respectively a
“small” effect, and how many times larger a “large” effect should be.

Bayesian Analysis Strategy for Complex Aliasing
e Assignment of distributions (cont.)

— The & and o2 are independent.
)
p+1
« Independence prior: (6) = H pid%(1— pi)l_si, where
i=1
pi = Prob(§;=1).
x Prior with effect heredity principle
- Consider the example & = (84,95, 0¢, 045, 04c, Op¢C)
Prob(8) = Prob(d4)Prob(dg)Prob(d¢)

X Prob(SAB | 04, 83)P1”0b(8AC | 04, Sc)PrOb(SBC | og, 5(]) .

2

poo  if (84,98) =(0,0)

if (04.05)= (0,1

Prob(8ap = 1/84,85) = ¢ por if (64,08) = (0,1)
pio  if (84,08) = (1,0)

| p1 i (84,08) = (1,1)
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Bayesian Analysis Strategy for Complex Aliasing

e Assignment of distributions (cont.)

— O (cont.)
* Some notes for Prob(d):
- Independence is assumed among the §;’s for main effects
- Conditional independence principle: conditional on 9;’s for main
effects, the 9;’s for interactions are independent
- Inheritance principle: the significance of a term depends only on
those terms from which it was formed
* Some notes for Prob(04p):
- We should choose pgg small (e.g., 0.01), po1 and pig larger (e.g.,
0.10) and p; largest (e.g., 0.25) = relaxed weak heredity
- Strict weak heredity: setting pgo =0
- Strong heredity: setting poo=po1=p10=0
- Probabilities of less than 0.5 for both main effects and interactions
represent the belief that relatively few terms are active, 1.e., effect
sparsity holds.
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Bayesian Analysis Strategy for Complex Aliasing

e Assignment of distributions (cont.)

— o?: inverse gamma
o ~IG(v/2,VA/2),

whose density is

n(c?) o< (0%) /2P exp{—VA/(20%)}.

e The evaluation of the posterior for 8 can be implemented by using Gibbs
sampling, a simple Markov Chain Monte Carlo (MCMC) technique for
drawing samples from a posterior distribution (read textbook, 9.5.2, for
details).

e Because 0 specifies a model by the i’s with §; = 1, the posterior for 8 is of

particular interest.

e Choice of prior tuning constants T, ¢, v, A: see textbook, 9.5.3, for details.

+ Reading: textbook, 9.5




