

from alias matrix
 $(X_1 X_2)^{-1} X_1^T X_2$,
 may not be consistent
 with $X_1^T X_2$

Complex Aliasing

one in X_1 , the other in X_2

- Two effects are said to be partially aliased if the absolute value of their aliasing coefficient is strictly between 0 and 1.
- The **complex aliasing** refers to the enormous number of effects in X_2 (e.g., 2-factor interactions) that are partially aliased with the effects in X_1 (e.g., main effects).
- By comparison, for 2^{k-p} or 3^{k-p} regular designs,
 - the factorial effects are either orthogonal (i.e., uncorrelated) or fully aliased (i.e., with aliasing coefficient 1 or -1) with each other, and
 - the number of (full) aliases is much smaller.

2^{k-p} ,
 each alias set
 contains 2^p effects

only effects in same alias set
 are fully aliased.

❖ Reading: textbook, 9.1

Traditional Analysis Strategy

↳ \therefore cannot fit $[X_1 X_2]$ simultaneously.

- For designs with complex aliasing, it is difficult to disentangle the large number of aliased effects and to interpret their significance.
- For this reason, such designs were traditionally used for screening factor effects only, i.e., to estimate factor main effects but not their interactions.
- These designs are therefore referred to as screening designs.
 ↳ purpose: identify important "factors" using ME-only model.
- The validity of the main effect estimates for screening designs depends on the assumption that the interaction effects are negligible, which is often questionable in many practical situations.
- It suggests the need for strategies that allow interactions to be entertained.

❖ Reading: textbook, 9.2

Simplification of Complex Aliasing

- The complex aliasing pattern can be greatly simplified under the assumption of *effect sparsity*.
 - Effect sparsity: number of relatively important effects (e.g., main effects and two-factor interactions) is small. \uparrow larger contribution to R^2
 - By employing the effect sparsity and effect hierarchy principles, one can assume that only few main effects and even fewer two-factor interactions are relatively important.
- With this assumption, the complex aliasing pattern of a design can be greatly simplified. This simplification and the partial aliasing of effects make it possible to estimate some interactions. \leftarrow

\uparrow Note: all the effect vectors are different in L_{Np.4-26} example.
partial aliasing can be an advantage under the situation

Simplification of Complex Aliasing

- Consider the hypothetical example.
 - Suppose that in the cast fatigue experiment only A, F, G, AB, and FG are significant. \leftarrow i.e. the β 's of other effects are zero.
 - If the seven main effect estimates were obtained under the main-effect-only model, their expectations in L_{Np.4-26} are simplified as follows:

$$\begin{bmatrix} \hat{\beta}_A \\ \hat{\beta}_B \\ \vdots \\ \hat{\beta}_G \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 1 & -\frac{1}{3} & 0 \end{bmatrix} \begin{bmatrix} \beta_A \\ \beta_F \\ \beta_G \\ \beta_{AB} \\ \beta_{FG} \end{bmatrix}$$

$$\begin{aligned}
 E(\hat{A}) &= A - \frac{1}{3}FG \\
 E(\hat{B}) &= -\frac{1}{3}FG \\
 E(\hat{C}) &= -\frac{1}{3}AB + \frac{1}{3}FG \\
 E(\hat{D}) &= -\frac{1}{3}AB + \frac{1}{3}FG \\
 E(\hat{E}) &= -\frac{1}{3}AB - \frac{1}{3}FG \\
 E(\hat{F}) &= F + \frac{1}{3}AB \\
 E(\hat{G}) &= G - \frac{1}{3}AB
 \end{aligned} \tag{1}$$

Best Subset Regression

- For a model with p regression coefficients, (i.e., $p - 1$ covariates plus the intercept β_0), define its C_p value as

$$C_p = \frac{RSS}{s^2} - (N - 2p)$$

fitting \longrightarrow $\frac{RSS}{s^2}$ \longleftarrow s^2 under full model.

model complexity

where RSS = residual sum of squares for the given model, s^2 = mean square error = $\frac{RSS \text{ (for the complete model)}}{df \text{ (for the complete model)}}$, N = number of observations.

- If the model is true, then $E(C_p) \approx p$. Thus one should choose p by picking models whose C_p values are low and close to p . For the same p , choose a model with the smallest C_p value (i.e., the smallest RSS value).

AIC and BIC Information Criteria

- The Akaike information criterion (AIC) is defined by

$$AIC = N \ln\left(\frac{RSS}{N}\right) + 2p$$

fitting \longrightarrow $\frac{RSS}{N}$ \longleftarrow $e^2 = 7.38$

model complexity

- The Bayes information criterion (BIC) is defined by

$$BIC = N \ln\left(\frac{RSS}{N}\right) + p \ln(N)$$

fitting \longrightarrow $\frac{RSS}{N}$ \longleftarrow different weights

model complexity

- In choosing a model with the AIC/ BIC criterion, we choose the model that minimizes the criterion value.

But, only compare p for unidentifiable models.

- Unlike the C_p criterion, the AIC criterion is applicable even if the number of observations do not allow the complete model to be fitted.

- The BIC criterion favors smaller models more than the AIC criterion.

Stepwise Regression

Alternative, use AIC or BIC

- This method involves adding or dropping one variable at a time from a given model based on a partial F-statistic.

Let the smaller and bigger models be Model I and Model II, respectively.

The partial F-statistic is defined as

$$\frac{RSS(Model\ I) - RSS(Model\ II)}{RSS(Model\ II)}/v$$

$$\leftarrow \text{S}^2 \text{ under Model II.}$$

effect from
model II

where v is the degrees of freedom of the RSS (residual sum of squares) for Model II.

- There are three possible ways

1. Backward elimination : starting with the full model and removing covariates.

2. Forward selection : starting with the intercept and adding one variable at a time.

3. Stepwise selection : alternate backward elimination and forward selection.

Usually stepwise selection is recommended.

Criteria for Inclusion and Exclusion of Variables

critical value

- F-to-remove : At each step of backward elimination, compute the partial F value for each covariate being considered for removal. The one with the lowest partial F, provided it is smaller than a preselected value, is dropped.

The procedure continues until no more covariates can be dropped. The preselected value is often chosen to be $F_{1,v,\alpha}$, the upper α critical value of the F distribution with 1 and v degrees of freedom. Typical α values range from 0.1 to 0.2. multiple testing \rightarrow choose a larger α than 0.05.

- F-to-enter : At each step of forward selection, the covariate with the largest partial F is added, provided it is larger than a preselected F critical value, which is referred to as an F-to-enter value.

- For stepwise selection, the F-to-remove and F-to-enter values should be chosen to be the same.

❖ Reading: textbook, 1.7

Frequentist Analysis Strategy for Complex Aliasing

$[X_1 \dots X_2] \leftarrow \# \text{ of columns} > \# \text{ of rows} (\# \text{ of effects} > \# \text{ of runs})$

- The analysis of experiments with complex aliasing can be viewed as a variable selection problem. But, $\because \text{cannot fit } \beta^2 \text{ for full model.}$

– backward selection and C_p -criterion cannot be used here because the full model is not estimable

– all-subsets regression may be computationally infeasible because of the large number of effects

$$\begin{aligned} & \xrightarrow{OA(12, 2^6)} \text{ME. 11} \\ & 2^6 = 64 \quad \left[\binom{6}{2} = 15 \right] 66. \end{aligned}$$

- The frequentist analysis strategy is based on:

– Effect sparsity principle \rightarrow prefer model with smaller R (LN p. 4-32)

– Effect heredity principle \rightarrow apply on submodels

$$Y \sim A + B + AB$$

$$Y \sim A + B + AC$$

$$Y \sim A + B + CD \leftarrow \text{less prefer}$$