NTHU STAT 5550, 2013 Lecture Notes

p. 4-38

Frequentist Analysis Strategy for Comple ing
facter A,8,6, D, F
o Method I A, AB.Ac .AD,AE, AF, A

= B,AB,BS, BD.BE, BF, B
Step 1. > ---

W5 o — For each factor X, entertain X and 1ts

SM with !
sarto with other factors. il model or Sl S

— Use a stepwise regression procedure to 1d

two-factor interactions XY

{ f

entlf))%lgmﬁcant effects

from the candidate variables and denote the selected model b
— Repeat this for each of the factors and then choose the best model.
— Go to Step 2.

Step 2.

— Use a stepwise regression procedure to identify significant effects
among the effects identified in the previous step as well ag(all the main

effects. (Mav MBu-u Mg ) U ($A3, 583, ---,563)
— Go to Step 3. q> L A
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Frequentist Analysis Strategy for Complex Aliasing

e Method I (cont.)

appearing among the main effects in (1).

(i11) interactions suggested by the experimenter.

— Use a stepwise regression procedure to identify significant effects
among the effects in (1)-(iii).

— Go to Step 2.

Step 4. Iterate between Steps 2 and 3 until the selected model stops
changing.

mAay Wov comwergg. .
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Frequentist Analysis Strategy for Complex Aliasing
e Some properties of Method I

— Since the model search in the procedure is guided by effect heredity, the

problem of obtaining uninterpretable models is

— However, this problem cannot be completely avoided because effect

heredity is not enforced throughout the procedure.
— Effect sparsity suggests that only a few iterations will be required.

- If @wo factor interactions are entertained indiscriminately in Step 3, it
is possible to get a good fitting model consisting{only)of interaction
terms and no main effects; hence, nonsensical models may be obtained

without assuming effect heredity. Zg‘\‘eg 3
— Step 2 is motivated by the possibility of missing main effects il Step 1
because of the existence of interactions and complex aliasing.

— If a more extensive search of models is desired, the final model obtained
by Method I can be viewed as a good starting model.
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Frequentist Analysis Strategy for Complex Aliasing
_—mprove © stepuise search v Method T
e Method II @ tal wodel not saﬁsﬁmg e Wd:’-l—y_

— The iterative search in Method I can be easily implemented
computationally but does provide a very extensive scarch for models.

— Suppose effect sparsity suggests that no meaningful model can have
more tha ffects.
+x Box and Meyer (1986) have found that the proportion of active effects
1s typically between@;B and O.Zﬂof the design’s run size, so that a

choice for 4 abou 0.3(D)f the run size seems reasonable.
2 Tuns, 3~-4 effecks,

— Search procedure:
* Search over@models that have no more than 4 effects (plus an
intercept term) andﬂéatisfy the effect heredity requirement.
Choose the best model (or models) according to a sensible model
ékéeiection criterion (e.g., the C,, or AIC, BIC criteria).

PR stepwise by all satbsels  method.
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Frequentist Analysis Strategy for Complex Aliasing

e Some properties of Method IT

— Method II provides a. extensive search than Method I if / is not
smaller than the number of effects in the model selected by Method I.

— Rather than relying entirely on a model selection criterion, the analyst
might inspect the best fitting models with 1, ..., A effect(s), respectively,
to identify which terms are the most important and to assess the gains
achieved as larger models are considered

— When there are quite a few good fitting models for a given model size,

this would suggest that the experimental data do not contain sufficient
Gq,,m cake, Method T

information to distinguish between them. Pkt not conv

* Methods I and IT work well when there are 0n1y81gr¢1:§;1nt
interactions that are partially aliased with the main effects. Otherwise,
several incompatiable models may be identified (see an example in
Section 9.4.1).
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Frequentist Analysis Strategy for Complex Aliasing
Mi: class ofy submodels with 4-; MEs 2
e Some properties of Method II (cont.) ¢ 2§U's.
— The constraint imposed by effect hel%y'subgﬁ tlyreduces the
model space searched in Method IILES*M&UJ #ol 8, (("') ~(3) ) @
+x Consider, the 12-run PBD with 11 fa%&x‘nﬁ_4 n Method I
x The total number of main effects and two-factor interact

11 — & of all submoded (M Moyl w
o () =667 % B o) 2 >-
x The total number of models with CIms (and the 1nterc )pt) 18

66 { ne

() ~ 20100

* There ar odels satisfying the effect heredlty requirement.
This is about 2.2% of the total number of models.

— As the number of factors and / increase, the search will become
computationally prohibitive. An alternative is to use an efficient
stochastic search such as the Bayesian variable selection.

+ Reading: textbook, 9.4
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Analysis of Cast Fatigure Experiment

e The design is an OA(12,2¥). YnPtB+Cr -t 6@82:1‘:3““5
e Consider the main-effect-only model. ‘
7oA 4 sevgn2 )

— The 11 columns in Table 1 are mutually orthogonal:

The main effect estim uncorrelated and unbiased estimates of the
main effects|if there are no interactions.

—"Half-normal plot:
altnative L
Lewrin's wethod|
a\vearnaive 2t
ttet it @
ts veltable.

g r T T T
il ] 05 10 1.5 pli] 25
bail-pormal quenlidss

Figure 1: Half-normal plot, cast fatigure experiment

+ The model with F alone has an R? =£0.45 inase \$%
+ The model (F,D) has an R? @ #rd the fitted model is

y=15.73+0.458F —0.258D.

Analysis of Cast Fatigure Experiment /[Jz.2
~F+AF+BF{CF+DFtEF +F§ heredit
Entertain a model with ME F anhe interactions involving F<

=Jdentify a significant F'G interaction. () R2ous
Ty shows
need-

a
he model for predicted fatigue lifetimes is Qe wportondt

$=5.7+0.458F —0.459FG| facers F & &)

x Set (F,G) = (+,—). The predicted life is

5.7+0.458 —0.459(—1) =5.74+0.92 = 6.62. b

« Compared to the average lifetimes (=5.7), it has a 16% 1ncrease( &F&)
(=0.92/5.7)
« Compared to (F,G) = (—, ®), it has a 38% increase (=1.84/4.78)

— The potential for a dramatic improvement would not have been possible
without discovering the F'G interaction.
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Analysis of Cast Fatigure Experiment
Using Method I, the model (F, FG) is found in Step 1 and does not change
in further steps.

Method II also identifies model (F, FG) usin

For larger & (say, 3 or 4), Method II identifies multiple good fitting models,
each of which contains F and FG.

The original analysis used main-effect-only model and

— identified the F and D as significant,

— noted a discrepancy between the/{indings and previous work, i.e., the
sign owas reversed, §p=—0~>-€&, @D showd be post

‘&concluded that the possible cause was an interaction DE;

@ claimed that the design did not generate enough informatios
determine DE.

D s nobr pwﬂffaug,a/mszal wrih D&

Because the DE interaction is orthogonal to both D and E main effects,
these three effect estimates are uncorrelated and therefore the DE
interaction does not affect the sign of the factor D main effect.

Analysis of Cast Fatigure Experiment
e The design’s aliasing patterns can be used to explain this apparent reversal.

Table 9: Estimates and Alias Patterns, Cast Fatigue Experiment

Undor Estimated Alias& dosuml
ME-on/y model, Effect Effect Pattern true model
Note: - grvA-rBf»- tG+Hq.
¢ Jr~Abr-1q
D
E
F
G
8
9
10 081 1FG
11 £0.242 LFG
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Analysis of Cast Fatigure Experiment

e The D estimate can be adjusted as follows:

. 1 — 610\§\b
- 1FG=—0.516—(~0.306) =C0.210)
; (-0.306) =C0210)>

e A 95% confidence interval for D, (—0.526, 0.106)=(—0.210£0.316), shows
that a positive D main effect is possible.

e The magnitude of the estimated effects of A, B and C can be explained from
Table 9 by an F'G interaction; i.e.,

et
(~3FG.—3FG,3FG) = (0.306,0.306,0.306)

are close to their estimates, 0.326, 0.294 and —0.246, respectively.

e The effects A-E and 8-11 have the sameas their F G aliases, which lend
further support to the existence of a significant F'G interaction.

p. 4-49

Bayesian Analysis Strategy for Complex Aliasing

e The Methods I and II work well if
N N\
— the models under search are restricted to have a small number of terms,

and 2L osg; R A smal
® ol ol possible. effeilR.

— the number of’candidated term? to choose from is moderate.

e As the number of candidate terms to choose from and/or the number of
terms allowed in the model increases,

— the search over the model space is too incomplete for Method I to be
effective, and

— the required computations for Method II become prohibitively expensive

even with the help of effect heredity to reduce the number of models.
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Bayesian Analysis Strategy for Complex Aliasing

e Bayesian framework:

— Let y denote the data, and 6 denote the the vector of parameters. Both

are random variables. ? .
. . . 1 0,06, 2, o o )

f(y|0): the likelihood of y given 6
— 1(0): the prior distribution for 6.

g-cA,B, c, AB Ac, BC)
— The posterior distribution for 0 is:

m(6ly) = F(¥/6)n(8)/ [ F(3l0)m
— Using the posterior distribution, inference about 6 can then be made.

e Parameters 0 = (§,8,5°)
£ Qe e ceRY. .

- B:a @ vector containing the intercept and factorial effects,

— &: a (k+ 1) vector of 0’s and 1’s indicating the significance of the effects

— ©2: error variance in the linear model
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Bayesian Analysis Strategy for Complex Aliasing
$(4,.0.6°= scglp,a‘e) T(p.IS)

e Assignment of distributions lrkeihood 5 P\"°"a_l
=&Y , 6>
— y|B,8,06%: alinear model structure 5led.€)- Tr(ﬁ( ¢) %63“(61)
an be than N.
where X is the N X model matrix, and € ~ MN(0,6%Iyx ).

— B|8,6%: normal mixture prior

N(0,c1%)) ifo; =0
7'C(|3i|6i762) - N(O,G%i)z) if 8,‘ =1 .

x When §; = 0, the constant T; needs to be specified so that ; is tightly
centered around O and therefore does not have a large effect.

x The constant ¢; needs to be chosen with ¢; > 1 to indicate the
possibility of a large 3; when J; = 1.

x The constants T; and ¢; should be chosen to represent respectively a
“small” effect, and how many times larger a “large” effect should be.
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Bayesian Analysis Strategy for Complex Aliasing

e Assignment of distributions (cont.) | @ smlan to meded selelion. wrth,

effeds henediby prineaple.,
(OS2 small 5 el sty

+1
p,-si(l —pt-)l_a", where
pi = Prob(d; =1).

x Prior with effect heredity principle

- Consider the example 8 = (04,05,0¢,048,04c; OBC)
m T Prob(8,)Prob(85)Prob(3¢)
P(32.98.00) =

P(&AB JA‘I Bo‘ﬁoﬁ,&) XLP_rOb(SAB‘SA 9 SB)PFOb(SAC‘SA, SC)PFOb(SBc‘SB, 8C>

— The & and 62 are independent.

- 8/,(5:/5;— ) “";w

* Independence prior:

\{@ (@) if(84,88) = (0,0)
‘K&M‘FP«;XB 3(/\ 8 1Sx 5] — 4 D if (SA,SB) = (0, 1)
+2Cre[Tpd I~ Oan = 100080 =9\ it (3.8) = (1,0
ﬂ?@u\ﬁp«,a'e,{) \ @ if (84,88) = (1,1)
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Bayesian Analysis Strategy for Complex Aliasing

e Assignment of distributions (cont.)

- O (cont.)
* Some notes for Prob(9d):
Q) Independence is assumed among the §;’s for main effects
@ Conditional independence principle: conditional on 9;’s for main
effects, the §;’s for interactions are independent
@Inheritance principle: the significance of a term depends only on
those terms from which it was formed
% Some notes for Prob(d,p):
- 'We should choose go(e.g., 0.01), po1 and ploe.g.,
0,10) and p11 (e.2., 0.25) = relaxed weak heredity
- Strict weak heredity: setting pgo =0
- Strong heredity: setting poo=po1=p10=0
- Probabilities of less than 0.3 for both main effects and interactions
represent the belief that relatively few terms are active, i.e., effect

sparsity holds.

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)



NTHU STAT 5550, 2013 Lecture Notes

p. 4-54

Bayesian Analysis Strategy for Complex Aliasing

e Assignment of distributions (cont.)

— o7: inverse gamma

o2 ~ 1662 8)2),

whose density is

. 7'[((52) o (62)_(V/2+1/2) CXp{—Vk/(ZGZ)}.

The evaluation of the posterior for 8 can be implemented by using Gibbs
sampling, a simple Markov Chain Monte Carlo (MCMC) technique for
drawing samples from a posterior distribution (read textbook, 9.5.2, for

details). can b.z Summarized on P( )

: > S -1( L)
Because 0 specifies a model by the i’s with §; = 1, the posterior for d is of
particular interest.

e Choice of prior tuning constants T, ¢, v, A: see textbook, 9.5.3, for details.

+ Reading: textbook, 9.5
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