

Analysis of the Ranitidine Experiment

- Model:
$$\begin{aligned} y = & \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 \\ & + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{33} x_3^2 + \epsilon \end{aligned}$$
- Run 7 in Table 2 is dropped due to a blockage occurred in the separation

Table 8: Least Squares Estimates, Standard Errors, t Statistics and p-values, Ranitidine Experiment (Run 7 Dropped)

Effect	Standard			
	Estimate	Error	t	p-value
intercept	2.1850	0.5785	3.78	0.00
β_1	1.1169	0.4242	2.63	0.03
β_2	0.7926	0.4242	1.87	0.09
β_3	0.0101	0.4262	0.02	0.98
β_{11}	2.7061	0.3788	7.14	0.00
β_{22}	-0.0460	0.3786	-0.12	0.91
β_{33}	-0.1295	0.3850	-0.34	0.74
β_{12}	1.4667	0.5890	2.49	0.03
β_{13}	-0.1918	0.5890	-0.33	0.75
β_{23}	0.2028	0.5890	0.34	0.74

- only effects involving factors pH and voltage are important

Analysis of the Ranitidine Experiment

- Fitted response surface:

$$\hat{y} = 2.0373 + 1.1543x_1 + 0.7552x_2 + 2.7103x_1^2 + 1.530x_1x_2$$

- Contour plot

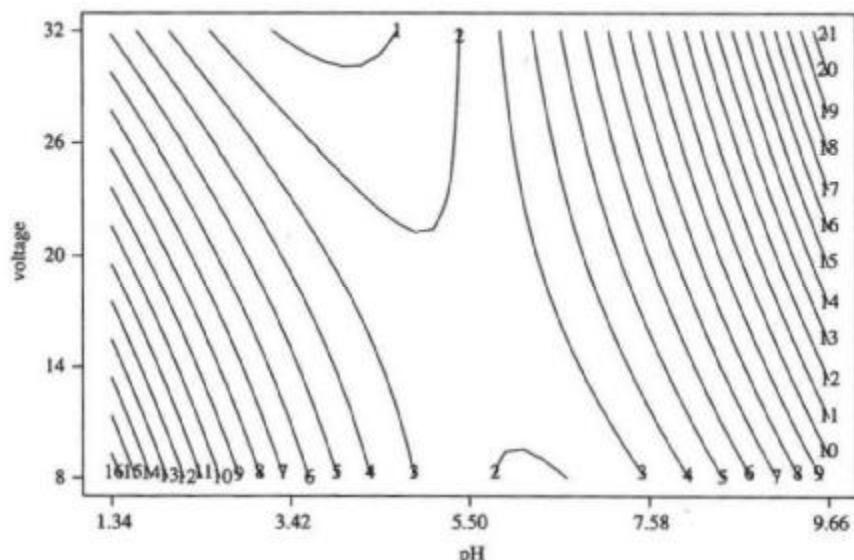


Figure 8: Estimated Response Surface, Ranitidine Experiment (Run 7 Dropped)

Analysis of the Ranitide Experiment

- A follow-up experiment in pH and voltage
 - Range of pH (A) was narrowed with levels (4.19, 4.50, 5.25, 6.00, 6.31)
 - Levels of voltage (B) were (11.5, 14.0, 20.0, 26.0, 28.5)
 - The coded values are ($-1.41, -1, 0, 1, +1.41$)

Table 9: Design Matrix and Response Data, Final Second-Order Ranitidine Experiment

Run order	Factor		ln CEF
	A	B	
2	1	-1	6.248
7	1	1	3.252
11	-1	-1	2.390
12	-1	1	2.066
3	-1.41	0	2.100
8	1.41	0	9.445
9	0	1.41	1.781
1	0	-1.41	6.943
4	0	0	2.034
5	0	0	2.009
6	0	0	2.022
10	0	0	1.925
13	0	0	2.113

Analysis of Final Ranitidine Experiment

- Model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \epsilon$
- Analysis result:

Table 10: Least Squares Estimates, Standard Errors, t Statistics and p-values, Final Second-Order Ranitidine Experiment

Effect	Standard			
	Estimate	Error	t	p-value
intercept	2.0244	0.5524	3.66	0.0080
β_1	1.9308	0.4374	4.41	0.0031
β_2	-1.3288	0.4374	-3.04	0.0189
β_{12}	-0.6680	0.6176	-1.08	0.3153
β_{11}	1.4838	0.4703	3.15	0.0160
β_{22}	0.7743	0.4703	1.65	0.1437

Analysis of the Ranitidine Experiment

- Fitted model:

$$\begin{aligned}\hat{y} &= 2.0244 + 1.9308x_1 - 1.3288x_2 - 0.6680x_1x_2 + 1.4838x_1^2 + 0.7743x_2^2 \\ &= \hat{\beta}_0 + \mathbf{x}^T \mathbf{b} + \mathbf{x}^T \mathbf{B} \mathbf{x},\end{aligned}$$

where

$$\mathbf{b} = (1.9308, -1.3288)^T$$

and

$$\mathbf{B} = \begin{bmatrix} 1.4838 & -0.3340 \\ -0.3340 & 0.7743 \end{bmatrix}.$$

- The stationary point is $\mathbf{x}_s = -\frac{1}{2}\mathbf{B}^{-1}\mathbf{b} = (-0.5067, 0.6395)^T$, which yields $y_s = 1.1104$
- The eigen-decomposition of \mathbf{B} yields eigenvalues

$$\Lambda = \text{diag}(1.6163, 0.6418),$$

and eigenvectors

$$\mathbf{P} = \begin{bmatrix} -0.9295 & -0.3687 \\ 0.3687 & -0.9295 \end{bmatrix}.$$

NIHU STAT 5550, 2013, Lecture Notes

Analysis of the Ranitidine Experiment

- Since both λ_1 and λ_2 are positive, $y_s = 1.1104$ is the minimum value which is achieved at \mathbf{x}_s (pH of 4.87 and voltage of 23.84).

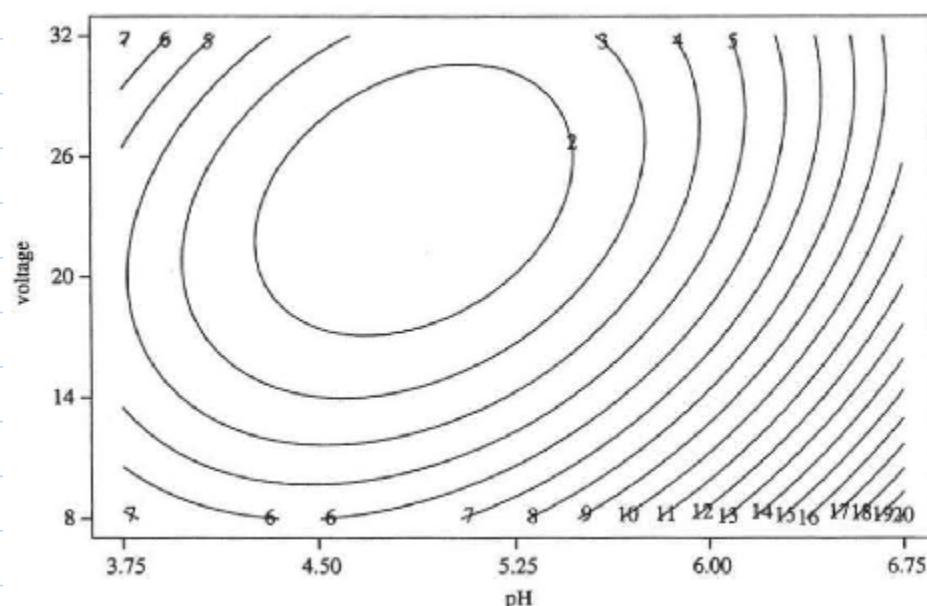


Figure 9: Estimated Response Surface, Final Second-Order Ranitidine Experiment

Central Composite Designs

- The k input factors in coded form are denoted by $\mathbf{x} = (x_1, \dots, x_k)$.
- A second-order model has $1 + k + k + \binom{k}{2} = \frac{(k+1)(k+2)}{2}$ parameters
- A central composite design consists of the following three parts:
 1. n_f *cube points* (or *corner points*) with $x_i = -1$ or 1 for $i = 1, \dots, k$. They form the *factorial portion* of the design.
 2. n_c *center points* with $x_i = 0$ for $i = 1, \dots, k$.
 3. $2k$ *star points* (or *axial points*) of the form $(0, \dots, x_i, \dots, 0)$ with $x_i = \alpha$ or $-\alpha$ for $i = 1, \dots, k$.
 - For the ranitidine experiment, the cube points are the 2^3 design, $n_c = 6$ and $\alpha = 1.66$.
 - $N = n_f + 2k + 1 \geq \frac{(k+1)(k+2)}{2} \Rightarrow n_f \geq \frac{k(k-1)}{2}$
- The central composite design can be used in a *single* experiment or in a *sequential* experiment.

NTHU STAT 5550, 2013, LECTURE NOTES

JOHNSON (MADE BY JHU WU (STAT, USA) and S. W. CHONG (NTHU, Taiwan))

Central Composite Designs

- In choosing a central composite design, there are three issues:
 1. choosing the factorial portion of the design,
 2. determining the number of center points,
 3. determining the α value for the star points.

Central Composite Designs - Cube Points

- Function of the three parts in fitting a second-order model:
 - cube points: estimating linear main effects and interactions
 - center points: estimating overall quadratic main effects and $\hat{\sigma}$ (replicates)
 - star points: estimating and dealiasing linear and quadratic main effects
- **Theorem.** In any central composite design whose factorial portion is a 2^{k-p} design that does not use any main effect as a defining relation, the following parameters in (2) are estimable: $\beta_0, \beta_i, \beta_{ii}, i = 1, \dots, k$, and one β_{ij} selected from each set of aliased effects for $i < j$. It is not possible to estimate more than one β_{ij} from each set of aliased effects.

Central Composite Designs - Cube Points

- It is interesting to note that
 - even defining words of length two (for $k = 2$ case) are allowed and
 - words of length four are worse than words of length three.
- Any resolution III design whose defining relation does not contain words of length four is said to have **resolution III***.
- *Any central composite design whose factorial portion has resolution III* is a second-order design.*
- For the estimability of the parameters in the second-order model, one can only use the cube and star points of the central composite design if $\alpha \neq \sqrt{k}$. Such a design is referred to as a *composite design* and its run size is $n_f + 2k$.
 - the smallest designs without center points in the Table 11 for $k = 2, 3, 5, 6$ and 7 have the minimal run size and are saturated.

Central Composite Designs - Cube Points

Table 11: Central Composite Designs for $2 \leq k \leq 7$

k	$(k+1)(k+2)/2$	N	n_f	Factorial Portion (cube points)
2	6	7	2	$2^{2-1}(\mathbf{I} = AB)$
2	6	9	4	2^2
3	10	11	4	$2^{3-1}_{III}(\mathbf{I} = ABC)$
3	10	15	8	2^3
4	15	17	8	$2^{4-1}_{III}(\mathbf{I} = ABD)$
4	15	20	11	11×4 submatrix of 12-run PB design
4	15	25	16	2^4
5	21	22	11	11×5 submatrix of 12-run PB design
5	21	23	12	12×5 submatrix of 12-run PB design
5	21	27	16	$2^5-1_V(\mathbf{I} = ABCDE)$
6	28	29	16	$2^{6-2}_{III^*}(\mathbf{I} = ABE = CDF = ABCDEF)$
7	36	37	22	22×7 submatrix given in Table 10A.2 (textbook)
7	36	38	23	23×7 submatrix given in Table 10A.3 (textbook)
7	36	47	32	$2^{7-2}_{III^*}(\mathbf{I} = ABCDF = DEG)$

Central Composite Designs - Axial Points

- The efficiency of the parameter estimates is increased by pushing the axial points toward the extreme.
- In general, α should be chosen between 1 and \sqrt{k} and rarely outside this range.
- For $\alpha=1$, the axial points are placed at the center of the faces of the cube.
 - The design is therefore called the *face center cube*.
 - They are the only central composite designs that require three levels.
 - They are effective designs if the design region is a cube.
- For $\alpha=\sqrt{k}$, the axial points and cube points lie on the same sphere.
 - The design is often referred to as a *spherical design*.
 - They are effective designs if the design region is spherical.
 - For large k , this choice should be taken with caution.
- In general the choice of α depends on the geometric nature of and the practical constraints on the design region.

Central Composite Designs - Axial Points

- A design is called **rotatable** if $Var(\hat{y}(\mathbf{x}))$ depends only on

$$\|\mathbf{x}\| = (x_1^2 + \cdots + x_k^2)^{1/2},$$

that is, if the accuracy of prediction of the response is the same on a sphere around the center of the design.

- For a central composite design whose factorial portion is a 2^{k-p} design of resolution V, it can be shown that rotatability is guaranteed by choosing

$$\alpha = \sqrt[4]{n_f}. \quad (5)$$

- Eqn. (5) serves as a useful guide even when the factorial portion does not have resolution V.

Central Composite Designs - Axial Points

- The rotatability criterion should not, however, be strictly followed.
 - Its definition depends on how the x_i variables are coded. This lack of invariance with respect to the coding scheme makes it less attractive as a theoretical criterion.
 - Because rotatability often requires that the factorial portion has resolution V, use of a smaller composite design whose factorial portion has a lower resolution has not been popular. However, some of the central composite designs whose factorial portions have resolution V or higher have excessive degrees of freedom.
 - * For $k = 6$, the smallest design that satisfies the rotatability requirement is a 2_{VI}^{6-1} design for the factorial portion.
 - * The total run size of the central composite design is 45, which has 17 additional degrees of freedom over the minimal run size.
- **Near rotatability** will be a more reasonable and practical criterion.

Central Composite Designs - Center Points

- The center points can
 - provide information on the pure error and
 - help stabilize the variance of the predicted response \hat{y} .
- For $\alpha = \sqrt{k}$, at least one center point is required for the estimability of the parameters in the second-order model. (Why?) Otherwise the variance of $\hat{y}(\mathbf{x})$ becomes infinite.
- To stabilize the prediction variance, the rule of thumb suggests
 - 3 to 5 runs at the center point when $\alpha \approx \sqrt{k}$,
 - 1 or 2 runs at the center point when $\alpha \approx 1$
 - 2 to 4 runs should be considered between these two extremes
- To estimate the error variance, more than 4 or 5 runs may be required.

✓ Reading: textbook, 10.7

Box-Behnken Designs

- A family of three-level second-order designs
- Combining two-level factorial designs with balanced (or partially balanced) incomplete block designs in a particular manner
- Illustration: A BIBD with 3 treatments and 3 blocks of size 2

Block	Treatment		
	1	2	3
1	×	×	
2	×		×
3		×	×

	Factors		
	x_1	x_2	x_3
1	± 1	± 1	0
2	± 1	0	± 1
3	0	± 1	± 1
4	0	0	0

- run size = $3 \times 2^2 + n_c$
- Why is it a second-order design?