

Response Surface Methodology (RSM)

- Experimental study focusing on the relationship between the response and the input factors.
- Common purposes in RSM:
 - Optimizing the response
 - Mapping the response surface over a region of interest
- Sequential experimentation strategy for optimization
- RSM is an effective tool especially when
 - input factors are quantitative,
 - there are only a few of input factors.

NTHU STAT 5550, 2013, Lecture Notes

Jointly taught by J. H. Wu (Georgia, USA) and S. W. Cheng (NTHU, Taiwan)

Ranitidine Experiment

- Consider an experiment to study three quantitative factors with up to 5 levels.

Table 1: Factors and Levels, Ranitidine Experiment

Factor	Levels
A. pH	2, 3.42, 5.5, 7.58, 9
B. voltage (kV)	9.9, 14, 20, 26, 30.1
C. α -CD (mM)	0, 2, 5, 8, 10

- The design matrix and the data are given on the next page. The design differs from 2^{k-p} design in two respects :
 - 6 replicates at the center,
 - 6 runs along the three axes.

It belongs to the class of *central composite designs* (CCD).

Ranitidine Experiment

Table 2: Design Matrix and Response Data

Run	Factor			CBF	ln CBF
	A	B	C		
1	-1	-1	-1	17.293	2.850
2	1	-1	-1	45.488	3.817
3	-1	1	-1	10.311	2.333
4	1	1	-1	11757.084	9.372
5	-1	-1	1	16.942	2.830
6	1	-1	1	25.400	3.235
7	-1	1	1	31697.199	10.364
8	1	1	1	12039.201	9.396
9	0	0	-1.67	7.474	2.011
10	0	0	1.67	6.312	1.842
11	0	-1.68	0	11.145	2.411
12	0	1.68	0	6.664	1.897
13	-1.68	0	0	16548.749	9.714
14	1.68	0	0	26351.811	10.179
15	0	0	0	9.854	2.288
16	0	0	0	9.606	2.262
17	0	0	0	8.863	2.182
18	0	0	0	8.783	2.173
19	0	0	0	8.013	2.081
20	0	0	0	8.059	2.087

NIHUSTAT 5550, 2013, Lecture Notes

Jointly made by JHU (Baltimore, USA) and S. W. Cheng (NTHU, Taiwan)

Ranitidine Experiment

The CCD has three parts

(1) *cube* (or corner) points, (2) *axial* (or star) points, (3) *center* points.

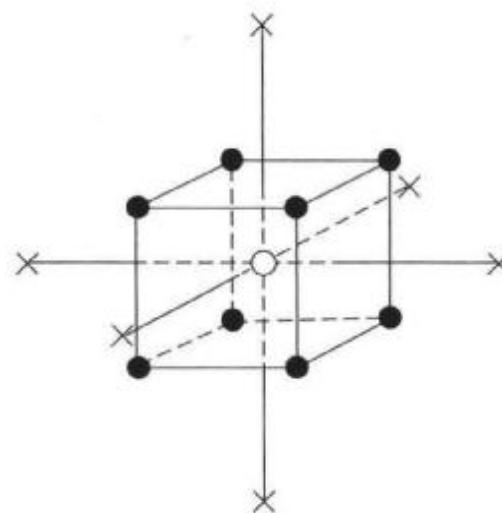


Figure 1: A Central Composite Design in Three Dimensions [cube point (dot), star point (cross), center point (circle)].

✓ Reading: textbook, 10.1

Sequential Nature of RSM

- Basic concepts

- For a process/system involving a response y and *input factors* X_1, \dots, X_k , model their relationship by

$$y = f(X_1, \dots, X_k) + \epsilon,$$

where f is unknown.

- Locally* approximate f by

$$f(X_1, \dots, X_k) \approx \sum_{i=1}^m \beta_i \cdot g_i(X_1, \dots, X_k),$$

where β_i 's: unknown parameters, and g_i 's: known functions of X_1, \dots, X_k

- Conduct experiments and collect data to estimate β_i 's
- Use *fitted response surface* \hat{f} to understand f :

$$\hat{f} = \sum_{i=1}^m \hat{\beta}_i \cdot g_i(X_1, \dots, X_k) \longrightarrow f$$

NTHU STAT 5550 2013 Lecture Notes

Jointly made by JHU (Baltimore, USA) and S. W. Cheng (NTHU, Taiwan)

Sequential Nature of RSM

- Sequential experimentation to maximize/minimize the response or to achieve a desirec value of the response:

- Screening Experiment** : When many variables are considered, some are likely to be inert. Use a 2^{k-p} design or an OA.
- Once a small number of important factors is identified, if the experimental region is far from the optimum (examined by **curvature check**), use the **first-order model**

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \epsilon, \quad (1)$$

to fit the data.

Sequential Nature of RSM

3. Based on the fitted first-order model, find the steepest ascent direction and perform a search along this direction (called **steepest ascent search**).
 - Steps 2 and 3 may be repeated until reaching the optimum region (e.g. peak of the surface).
 - Alternative to steps 2 and 3: **rectangular grid search**
4. To capture the curvature effects, use a **second-order design** (like the central composite design). Fit a **second-order model**

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i < j}^k \beta_{ij} x_i x_j + \sum_{i=1}^k \beta_{ii} x_i^2 + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2 I) \quad (2)$$

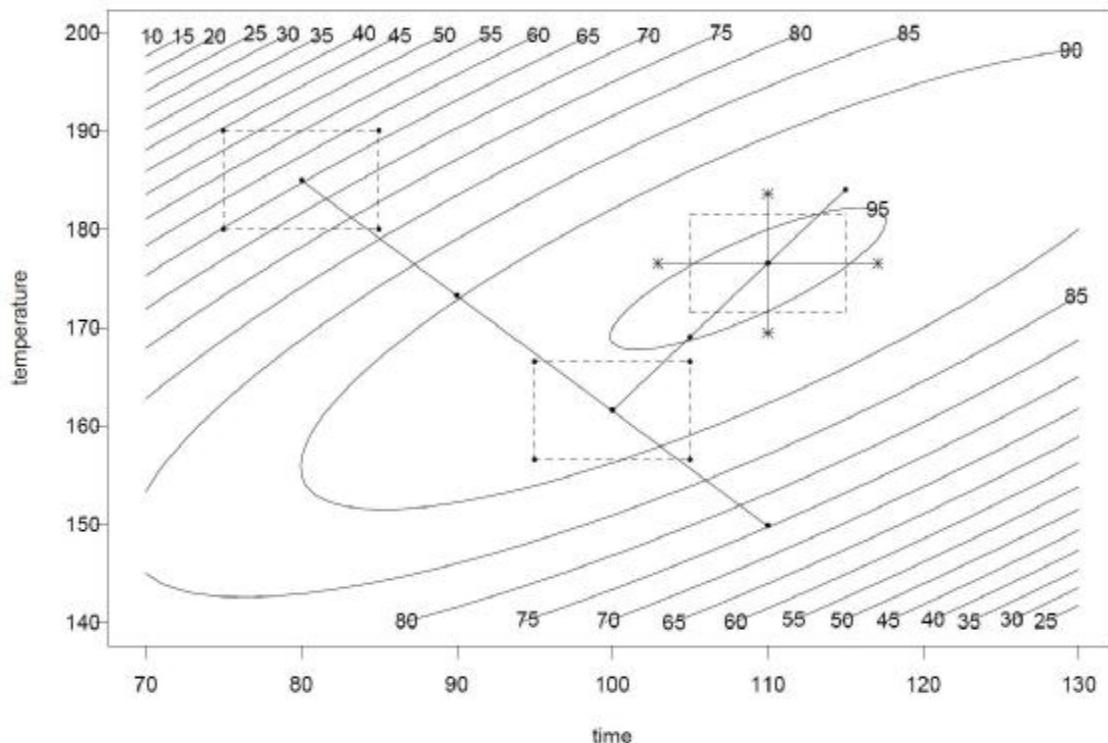
to data. Use the fitted model (with insignificant terms dropped) to do *contour plots* and find the *optimum* conditions.

A graphical illustration of these steps is given on next page.

NTHU STAT 5550 2013 Lecture Notes

Edited by J. H. Wu (USA) and S. W. Chong (NTHU, Taiwan)

Sequential Exploration of Response Surface



Center Points and Curvature Check

- Purposes of adding *replicated* center points to a 2-level first-order experiment
 - it allows the check of the overall curvature effect,
 - it provides an unbiased estimate of the process error variance
 - it allows the over-fitting/under-fitting check in residual plot
- Suppose that
 - the first-order experiment is based on a 2-level orthogonal design with run size n_f , and
 - n_c center point runs are added to the first-order experiment.

NTHU STAT 5550, 2013, Lecture Notes

p. 3-10

Center Points and Curvature Check

- Let \bar{y}_f = sample average over factorial runs with level ± 1 ,
 \bar{y}_c = sample average at n_c center points with level 0
- Under the second-order model

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i < j}^k \beta_{ij} x_i x_j + \sum_{i=1}^k \beta_{ii} x_i^2 + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2 I)$$

- $E(\bar{y}_c) = \beta_0$,
- $E(\bar{y}_f) = \beta_0 + \sum_{i=1}^k \beta_{ii}$,
- $E(\bar{y}_f - \bar{y}_c) = \sum_{i=1}^k \beta_{ii}$, and
- $Var(\bar{y}_f - \bar{y}_c) = \sigma^2 \left(\frac{1}{n_f} + \frac{1}{n_c} \right)$.
- *overall curvature* parameter: $\beta_{11} + \cdots + \beta_{kk}$
 - In using the overall curvature to measure the curvature effects, it is possible that some of the large β_{ii} cancel each other, thus yielding a very small $\sum_{i=1}^k \beta_{ii}$.
 - This rarely occurs unless exp'tal region near a saddle point of the f .

Center Points and Curvature Check

- To test the hypotheses

$$H_0 : \beta_{11} + \cdots + \beta_{kk} = 0 \text{ v.s. } H_a : \beta_{11} + \cdots + \beta_{kk} \neq 0$$

we can use $\bar{y}_f - \bar{y}_c$.

- Reject H_0 at level α if

$$\frac{|\bar{y}_f - \bar{y}_c|}{s \sqrt{\frac{1}{n_f} + \frac{1}{n_c}}} > t_{n_c-1, \frac{\alpha}{2}}$$

where s^2 = sample variance based on n_c center runs is used to estimate σ^2 .

- If the curvature check is not significant the search may continue with the use of another first-order experiment and steepest ascent. Otherwise, it should be switched to a second-order experiment.

NTHU STAT 5550, 2013, Lecture Notes

Jointly taught by J. H. Wu (ASU, USA) and S. W. Cheng (NTHU, Taiwan)

Center Points and Curvature Check

- Justification from regression analysis: