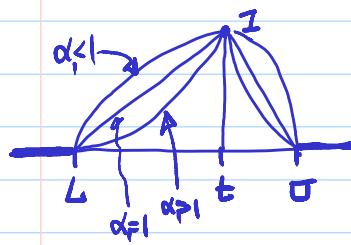


Analysis Strategies for Multiple Responses

- Desirability function

- For nominal-the-best problem



$$d = \begin{cases} \frac{1}{1 + (\frac{y - t}{\alpha_1})^{\alpha_1}}, & L \leq y \leq t \\ \frac{1}{1 + (\frac{t - y}{\alpha_2})^{\alpha_2}}, & t \leq y \leq U \\ 0, & \text{otherwise} \end{cases}$$

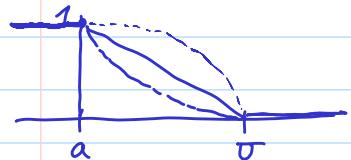
lower bound of acceptable \hat{y} value

target value

larger α : importance of being close to t

smaller α : do not have to be very close to the target t .

- For smaller-the-better problem

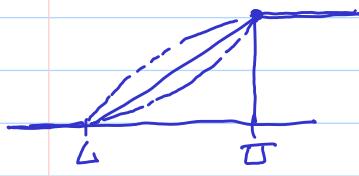


$$d = \begin{cases} 1, & a \leq y \leq U \\ 0, & y > U \end{cases}$$

upper bound

smallest possible value of \hat{y}

- For larger-the-better problem



$$d = \begin{cases} 0, & L \leq y \leq U \\ 1, & y > U \\ 0, & y < L \end{cases}$$

upper bound

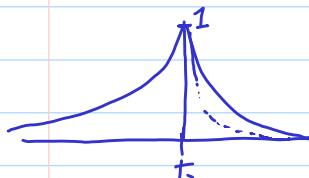
lower bound

Analysis Strategies for Multiple Responses

- Desirability function II

- In some practical situations, the L and U values in the desirability function I cannot be properly chosen.

- For nominal-the-best problem:



$$d = \begin{cases} \exp\{-c(\hat{y} - t)^\alpha\}, & -\infty < \hat{y} \leq t \\ \exp\{-c(\hat{y} - t)^\alpha\}, & t \leq \hat{y} < \infty \end{cases}$$

smaller α : make the desirability function drop more slowly from its peak.

- For smaller-the-better problem

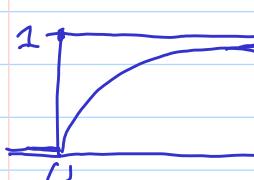


$$d = \exp\{-c(\hat{y} - a)^\alpha\}, \quad a \leq \hat{y} < \infty$$

smallest possible value.

smaller C : increase the spread of the desirability function by lowering the whole exponential curve between 0 & 1.

- For larger-the-better problem



$$d = \begin{cases} 1 - \exp\{-c(\hat{y} - L)^\alpha\} / \exp\{-c(L)^\alpha\}, & L \leq \hat{y} < \infty \\ 0, & \hat{y} \leq L \end{cases}$$

lower bound

Analysis Strategies for Multiple Responses

- Overall desirability function D

transform multiple weighted geometric mean response problem into single response problem. (why reasonable?)

$$(x) D = d_1^{w_1} d_2^{w_2} \cdots d_m^{w_m},$$

Suggestion:

better to understand the relationship between y_1, \dots, y_m before perform desirability analysis.

where the weights w_i 's satisfy $0 < w_i < 1$ and $w_1 + \dots + w_m = 1$.

$\ln D = \sum_{i=1}^m w_i \ln d_i$

If any $d_i = 0$, then $D = 0$

When $w_1 = \dots = w_m = 1/m$, D is the geometric mean

- Weighted arithmetic mean

$$(x)$$

$$D = w_1 d_1 + w_2 d_2 + \cdots + w_m d_m$$

e.g. do PCA on y_1, \dots, y_m

- Any setting for the input factors that maximizes the D value is chosen to be one which achieves an optimal balance over the m responses.
 - After finding such a setting, it should be verified whether all constraints on the responses are satisfied can do confirm expt Some constraint may not be explicitly spelled out in the beginning.

❖ Reading: textbook, 10.6