

Central Composite Designs - Axial Points

- A design is called rotatable if $\text{Var}(\hat{y}(\mathbf{x}))$ depends only on

RSM centered on \hat{y}

$$\|\mathbf{x}\| = (x_1^2 + \dots + x_k^2)^{1/2},$$

$$\xrightarrow{\text{estimate}} [\mathbf{x}^T (\mathbf{x}^T \mathbf{x})^{-1} \mathbf{x}^T] \hat{\sigma}^2$$

$(1, x_1, \dots, x_k, x_1 x_2, x_1^2, \dots, x_k^2)$

that is, if the accuracy of prediction of the response is the same on a sphere around the center of the design.

- For a central composite design whose factorial portion is a 2^{k-p} design of resolution V, it can be shown that rotatability is guaranteed by choosing
 - It causes orthogonality between $LME \leftrightarrow LME$, $2fi \leftrightarrow 2fi$, $LME \leftrightarrow 2fi$.
- Eqn. (5) serves as a useful guide even when the factorial portion does not have resolution V.

$$\alpha = \sqrt[4]{n_f}. \quad (5)$$

∇ # of cube pts.

Central Composite Designs - Axial Points

- The rotatability criterion should not, however, be strictly followed.

- Its definition depends on how the x_i variables are coded. This lack of invariance with respect to the coding scheme makes it less attractive as a theoretical criterion.
 - Because rotatability often requires that the factorial portion has resolution V, use of a smaller composite design whose factorial portion has a lower resolution has not been popular. However, some of the central composite designs whose factorial portions have resolution V or higher have excessive degrees of freedom.

MA 2⁶⁻²

(*) For $k = 6$, the smallest design that satisfies the rotatability requirement have resolution is a 2^{6-1} design for the factorial portion. $\rightarrow \text{run size: } 2^{6-1} + 2 \times 6 + 1 = 45$

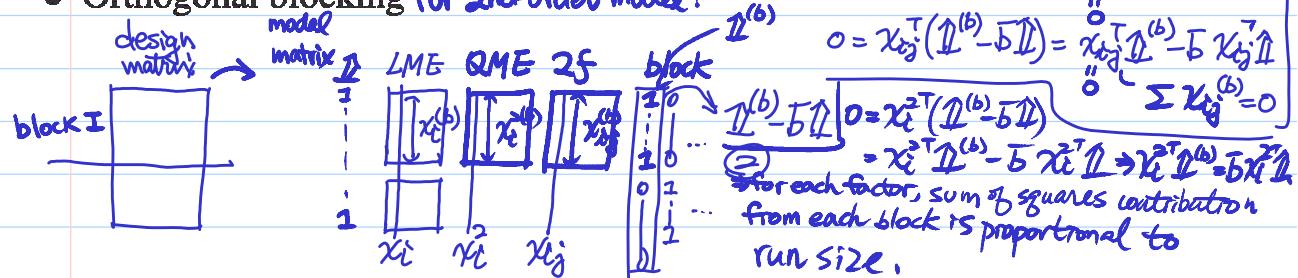
IV

- * The total run size of the central composite design is 45, which has 17 additional degrees of freedom over the minimal run size.

- Near rotatability will be a more reasonable and practical criterion.

Box-Behnken Designs - Some Properties

- Only require three levels of each factor (c.f., CCDs require 5 levels when $\alpha \neq 1$)
- All the design points (except the center) have length two, i.e., they all lie on the same sphere \leftarrow Spherical design.
 - These designs are particularly suited for spherical regions
 - Because of the spherical property, there should be at least three to five runs at the center point \leftarrow The design pts in a block form a first order orthogonal design
- The design for $k = 4$ is rotatable and the other designs are nearly rotatable $\leftarrow \sum x_i^{(b)} = 0$.
- Orthogonal blocking for 2nd-order model.



Box-Behnken Designs - Orthogonal Blocking

- For $k = 4, 5$, the designs can be arranged in orthogonal blocks
- $k = 4$ can be arranged in 3 blocks

BIBD		4				1		0		0	
1	2	3	4	± 1	± 1	0	0	± 1	± 1	0	0
1	2	3	4	0	0	± 1	± 1	0	0	0	0
6				0	0	0	0	0	0	0	0
block	x	x	x	± 1	0	0	0	± 1	0	0	0
	x	x	x	0	± 1	0	0	0	± 1	0	0
	x	x	x	0	0	± 1	0	0	0	± 1	0
	x	x	x	0	0	0	± 1	0	0	0	± 1

LME \rightarrow OK
 $2f_i \rightarrow x_1 x_2^{(b)} \text{ OK}, x_1 x_3^{(b)} = 2, \text{ OK.}$
 QME \rightarrow OK.

- $k = 5$, can be arranged in 2 blocks

BIBD		$\pm 1 \quad \pm 1 \quad 0 \quad 0 \quad 0$					Check (exercise)				
1	2	3	4	5	± 1	0	± 1	± 1	0	± 1	0
6					0	± 1	0	0	± 1	0	0
block	x	x	x	x	0	± 1	0	0	± 1	0	0
	x	x	x	x	0	0	± 1	0	0	± 1	0
	x	x	x	x	0	0	0	± 1	0	0	± 1
	x	x	x	x	0	0	0	0	± 1	0	0

LME
 $2f_i$
 QME

Uniform Shell Designs

- The designs have $k^2 + k + 1$ points, which consist of
 - $k^2 + k$ points uniformly spaced on the k -dimensional sphere, and
 - one center point
- For $k = 2$, it can be described by a regular hexagon plus the center point

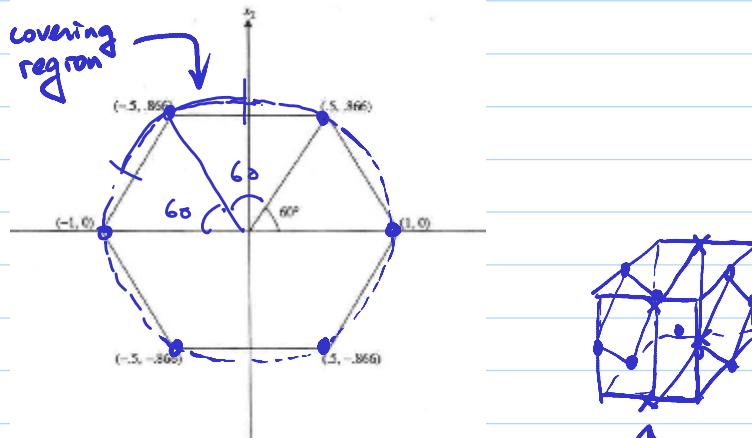


Figure 10: Uniform shell design, $k=2$

- For $k = 3$, it is identical to the Box-Behnken design

Uniform Shell Designs

- Uniformity property
 - Covering region of a design point: collection of points on the sphere that are closer to this design point than to the other design points.
 - Uniformity ensures that the covering region of each design point has the same spherical area.
- Run size comparison

R	2	7	6
3	13	10	
4	21	15	
5	31	21	

 - For $k > 5$, its run size is much larger than $(k+1)(k+2)/2$
- For $2 \leq k \leq 5$, the designs are given in Table 10C.1 (textbook)
 - These designs can be rotated without affecting the uniformity property. However, rotation will likely increase the number of levels.
 - In the table, the design points minimize the number of the levels
- A disadvantage of spherical designs: lack of coverage of the region between the origin and the spherical shell
 - remedy: choose 2 concentric spherical shells of distinctly different radii.

✓ Reading: textbook, 10.8

RPD \leftarrow location model
dispersion model

Analysis Strategies for Multiple Responses

- Multiple response analysis starts with building a regression fitted model for each response separately
- Some analysis strategies
 - Overlaid contour plots (if there are few responses and only two or three important input variables.)
 - Constrained optimization (if, among the responses, one is of primary importance)
 - Desirability function (if the goal is to find an optimal balance among several response characteristics)
- The desirability function approach transform each predicted response \hat{y}_i to a desirability value d_i , where $0 \leq d_i \leq 1$
 - The value of the **desirability function** d increases as the “desirability” of the corresponding response increases.