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Analysis of the Ranitidine Experiment

e Model:
y = Bo+ lel + l32x2 + B3x3 + Broxix + Bl3x11{3 + Bosxpxs

+|311 EQF "S'U 7

n able 21s drop e due to a blockage occurred in the seperation
&@w\w

Table 8: Least Squares Estimates, Standard Errors, ¢ Statistics and p-values, Ran-

itidine Experiment (Run 7 Dropped) gt not emove
Y i oals
Effect Estimate Error t p-value
intereopt 2.1850 0.5785 3.78 0.00 tn the Mz % 'a
[30 1.1169 [04242 2.63
) 0.7926 0.4242 1.87 (0.09)
Bs 0.0101 04262 002 0.98
0 27061 0.3788 7.14 0.00
Brr —0.0460 03786 |  —0.12 0.91
Bs3 —0.1295 03850 —034 0.74
L@ 1.4667 15890 2.49
B1s ~0.1918 0.5890 \1 ~033 0.75
Bas 02028 | 0.5890 034 0.74

e only effects involving factors pH and voltage are important
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Analysis of the Ranitidine Experiment

e Fitted response surface:

=2.0373+ 1. 1543x1 +_l§in2 + 2. 7103)61 +1. 53Ox1x2
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e Contour plot

s TN \\

e\»wmrs 26- \
piideR \ -
Satmmy gt P " =

(-0, 099)

&

20— |——
G
2

Figure 8: Estimated Response Surface, Ranitidine Experiment (Run 7 Dropped)
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Analysis of the Ranitide Experiment

o A follow-up experiment in pH and voltage

- 1.‘
— Range of pH (A d)with level 4.19, 5.25,6.00) 6.31
ange of pH (A) was[narrowed)with levels ( 1 @50 )

— Levels of voltage (B) were (11.5,34.0) 20.0,06.0), 28.5)
— The coded values are (—1.41,—1,0,1,+1.41)

Table 9: Design Matrix and Response Data, Final Second-Order Ranitidine Ex-

periment

Factor
Run order A B In CEF
2 1 —1 6.248
3.252
2.390
2.066
—141 0 2.100
1.41 0 9.445
141 1.781
—1.41 6,943
0 2.034
2.009
2.022
1.925
2113
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Analysis of Final Ranitidine Experiment

e Model: y = Bo + B1x1 + Boxa + Braxixa + Brix? + Boox3 +€

e Analysis result:

fesulty ™ \able &

Table 10y Least Squares Estimates, Standard Errors, ¢ Statistics and p-values,

Final Second-Order Ranitidine Experiment

Standard
Effect | Estimate Error t p-value
intercept | 2.0244 05524  3.66  0.0080
By 04374\ 441 0.0031
Ba ~3.04  0.0189
B1 ~0.6680 108 03157 2’ Ponoved
Bii 1.4838 3.15  0.0160 &\m
B2 0.7743 04703 ) 165 01437 | awlsit
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Analysis of the Ranitidine Experiment
e Fittied model:

y =

where

and

03340 07743 €

e The stationary point is X, = —+B~!b = (—0.5067,0.6395)7, which yields
v = 1.1104

e The eigen-decomposition of B yields eigenvalues
A =diag(1.6163,0.6418), =20,

and eigenvectors —0.9295 —0.3687

0.3687 —0.9295

p. 3-36

Analysis of the Ranitidine Experiment

e Since both A; and A, are positive, y; = 1.1104 is the minimum value which
is achieved at x; (pH of 4.87 and voltage of 23.84).
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Figure 9: Estimated Response Surface, Final Second-Order Ranitidine Experi-
ment

Vv Reading: textbook, 10.5
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| Y . . most fomous p.- 337
“ “Céntral Composite DeSIgns"@M_ =T

A

-\ XU\
e The k input factors inform are denoted by x = (x1,...,xz).

e A second-order model has 1+k+k+ (5) = (kﬂ)zﬂ parameters(\\ o4, 0

ﬁ. @cube points (or corner points) with x;= —1 or 1 fori=1,...,k. They
form the factorial portion of the design.
. 2-level £acoral design-
2. @centerpoints withx;=0fori=1,...,k
3. @smr points (or axial points) of the form (0,--- ,x;,---,0) with x,-=@0r
fOI‘ i=1,...,k Q-om-?udar—it—a—‘!‘}me, e,)cP‘h
— For the ranitidine experiment, the cube points are the 23 design, n. = 6
and o= 1.66.
(k1) (k=+2)

— N=ngp+2k+1> 80D oy >

k(k—1)

e The central composite design can be used in a single experiment or in a

sequential experiment.

. orthogonaliky (nodliey
LHe- 3“32@’;?5 Central Composite Designs oy

ofls: cube pis L “'L?E
QM a'n:cﬁo i]fBa central composite design, there are three issye /2§l
dortdy i D S San

1. a’f@gsiﬂgthe factorial portion of the design,

.. M~ VA’-M 2-|ewed %ﬂafésgn ?
2. determining the number of ce':,nter points, g
M = [N ! E + 2& - -
3. determining the ¢ value for the star oit;;sl; averagrs Ne=Ngr2R+\ '9’
e o= 2 ) Vnodl_é) WAt (
design walidy QME SQME
o [ ]
prS 7 | -g
canven o l
oS ~
&
ol L-il? 0
S El
° @
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e Function of the three parts in fitting a second-order model:

— cube points: estimating linear main effects and interactiol
— center points: estimating overall quadratic main effects g
— star points: estimating and(dealiasing!'ﬁnear and quadratic main effects

~ Why ? LNP3-38
e Theorem. In any central composite design whose factorial pe

parameters in (2) are estimable: Bo, B;, Bi, i = 1,...,k, and one B;; selected
from each set of aliased effects for i < j. It is not possible to estimate more
than one B;; from each set of aliased effects

o+ 1 35 I=ARCD A:Bc.
. . T 4> T=ABCD D AB=CD < cannor te dedirsad ,
N . {9 T=ABCDE = no a\tasrng —

Central Composite Designs - Cube Points

e It is interesting to note that
\
Z%ﬂu — even defining words of length two (for k£ = 2 case) are allowed and

el —*’onrds of lengtare worse than words of length

e Any resolution III design whose defining relation does not contain words of
length four is said to have resolution IIT*.

e Any central composite design whose_factorial portion has resolution I1I* is
a second-order design. “Qg{*\ﬂ'\f olon designs

e For the estimability of the parameters in the second-order model,{pne can
only use the cube and star points of the central composite design

Such a design is referred to as a composite design and its run size is ny+ 2k.

— the smallest designs without center points in the Table 11 for k=2, 3, 5,
6 and 7 have the minimal run size and are saturated.
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Central Composite Designs - Cube Points
Table 11: Central Composite Designs for 2 < k£ <7

k (k+ 1) (k+2)/2 N ti-i nf ﬁ(ﬁ'\% Factorial Portion (cube points)
’ 2—-1
{2 6 7 2 22-1(1=4B)
w 5
2 6 9 4 2
desigh | \3 10 11 4 23, 1 (1=ABC)
(wa 04, 10 15 8 23 —
no 15 17 8 ;@—1 (1=A4BD) |MA %—ms@’
ign) x4 15 20 11 11 x 4 submatrix of {I2—run PB design <
[/7A)
Civ Oy @
cube. D |
@J*S 12—run PB design
DS 21 23 12 12 x 5 submatrix of [[2—run PB design
5V 16 10 22~ 11 =A4BcDE
Nw«j/__z_v ( )
6 28 9 16 4] = ABE = CDF = ABCDEF ) 2 7/M&
7 36 37 22 2 x 7 submatrix|given in Table 10A.2 (textbook)
N xb7 36 38 23 23 % 7 submatrix)given in Table 10A.3 (textbook
1=2 7 _ _ -R
Tv ) —@ m(I_ABCDF_DEG)[M&L :

= @m@ —

p. 3-42

Central Composite Designs - Axial Points

e The efficiency of the parameter estimat;c:és increased by pushing the axial
points toward the extreme#” ’6"4‘9' P calzg"s "
\evék %, y\ength gy cabe pts
e In general, o should be chosen between 1 and y/k and rarely outside this
range. (0,0, 0-2)> | I={&
X
e For a=1, the axial points are placed at the center of the faces of the cube.

— The design is therefore called the face center cube.

— They are the only central composite designs that require(three Ievels)

— They are effective designs if the design region is a cube. m @
o=\ A>1,
e For a=v/k, the axial points and cube points lie on the same sphere.

— The design is often referred to as a spherical design.y_ (1 R=f

— They are effective designs if the design region is spherical.

— For large £, this choice should be taken with caution.

T oxval phs m An.-z%/vaa:z

e In general the choice of o depends on the geometric nature of and thefon
practical constraints on the design region. ceda,
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