Analysis of the Ranitidine Experiment

Model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3$ $(2i) \text{ not} + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{33} x_3^2 + \epsilon$

• Run 7 in Table 2 is dropped due to a blockage occurred in the seperation faulty.

Table 8: Least Squares Estimates, Standard Errors, t Statistics and p-values, Ranitidine Experiment (Run 7 Dropped)

dino Emportanono (14	WIL / L-1		MIGHT NOT TEMPORE			
			Standard		V	insignificant effects in the study of g.
	Effect	Estimate	Error	ı	(p-value)	1111
	intercept	2.1850	0.5785	3.78	0.00	in the study of y.
	₽ 0	1.1169	0.4242	2.63	0.03	
	R 2	0.7926	0.4242	1.87	0.09	
	β3	0.0101	0.4262	0.02	0.98	
	FIII	2.7061	0.3788	7.14	0.00	
	β ₂₂	-0.0460	0.3786	-0.12	0.91	
	β ₃₃	-0.1295	0.3850	-0.34	0.74	
	F(12)	1,4667	0.5890	2.49	0.03	
	β ₁₂ β ₁₃	-0.1918	0.5890	-0.33	0.75	
	β ₂₃	0.2028	0.5890	0.34	0.74	
					•	

• only effects involving factors pH and voltage are important

Analysis of the Ranitidine Experiment

• Fitted response surface:

$$\hat{y} = 2.0373 + \underbrace{1.1543x_1 + 0.7552x_2 + 2.7103x_1^2 + 1.530x_1x_2}_{\hat{\beta}_{12}}$$

Contour plot

Figure 8: Estimated Response Surface, Ranitidine Experiment (Run 7 Dropped)

Analysis of the Ranitide Experiment

- A follow-up experiment in pH and voltage
 - Range of pH (A) was narrowed with levels (4.19, 4.50, 5.25, 6.00, 6.31)
 - Levels of voltage (B) were (11.5, 14.0) 20.0, 26.0, 28.5)
 - The coded values are (-1.41, -1, 0, 1, +1.41)

Table 9: Design Matrix and Response Data, Final Second-Order Ranitidine Ex-

periment

	Fac		
Run order	A	В	In CEF
2	1	-1	6.248
7	1	1	3.252
11	-1	-1	2.390
12	-1	1	2.066
3	-1.41	0	2.100
8	1.41	0	9.445
9	0	1.41	1.781
1	0	-1,41	6.943
4	0	0	2.034
5	0	0	2,009
6	0	0	2.022
10	0	0	1.925
13	0	0	2.113

Analysis of Final Ranitidine Experiment

- Model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \varepsilon$
- Analysis result:

Table 10: Least Squares Estimates, Standard Errors, t Statistics and p-values,

Final Second-Order Ranitidine Experiment

	Standard			
Effect	Estimate	Error	t	p-value
intercept	2.0244	0.5524	3.66	0.0080
β_1	1.9308	0.4374	4.41	0.0031
β_2	-1.3288	0.4374	-3.04	0.0189
β_{12}	-0.6680	0.6176	-1.08	0.3153
β ₁₁	1.4838	0.4703	3.15	0.0160
eta_{22}	0.7743	0.4703	1.65	0.1437

removed in the following

p. 3-34

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

p. 3-36

Analysis of the Ranitidine Experiment

• Fittied model:

$$\hat{y} = 2.0244 + 1.9308x_1 - 1.3288x_2 - 0.6680x_1x_2 + 1.4838x_1^2 + 0.7743x_2^2$$

$$= \hat{\beta}_0 + \mathbf{x}^T \mathbf{b} + \mathbf{x}^T \mathbf{B} \mathbf{x},$$
where
$$\mathbf{b} = (1.9308, -1.3288)^T$$
and
$$\mathbf{B} = \begin{bmatrix} 1.4838 & 0.3340 \\ -0.3340 & 0.7743 \end{bmatrix}.$$

- The stationary point is $\mathbf{x}_s = -\frac{1}{2}\mathbf{B}^{-1}\mathbf{b} = (-0.5067, 0.6395)^T$, which yields $y_s = 1.1104$
- The eigen-decomposition of B yields eigenvalues

$$\Lambda = diag(1.6163, 0.6418), \geqslant 0.$$

and eigenvectors
$$P = \begin{bmatrix} -0.9295 & -0.3687 \\ 0.3687 & -0.9295 \end{bmatrix}$$
.

Analysis of the Ranitidine Experiment

• Since both λ_1 and λ_2 are positive, $y_s = 1.1104$ is the minimum value which is achieved at \mathbf{x}_s (pH of 4.87 and voltage of 23.84).

Figure 9: Estimated Response Surface, Final Second-Order Ranitidine Experiment

∨ Reading: textbook, 10.5

identifiable

Central Composite Designs most famous and-order des

- The k input factors in coded form are denoted by $\mathbf{x} = (x_1, \dots, x_k)$. The make the
- A second-order model has $1+k+k+\binom{k}{2}=\frac{(k+1)(k+2)}{2}$ parameters model
- A central composite design consists of the following three parts:
 - 1. (n_f) cube points (or corner points) with $x_i = -1$ or 1 for i = 1, ..., k. They form the factorial portion of the design.
 - 2. (n_c) center points with $x_i = 0$ for i = 1, ..., k.
 - 3. 2k star points (or axial points) of the form $(0, \dots, x_i, \dots, 0)$ with $x_i = \alpha$ or $-\alpha$ for $i = 1, \dots, k$.
 - For the ranitidine experiment, the cube points are the 2^3 design, $n_c = 6$ and $\alpha = 1.66$.
 - $-N=n_f+2k+1\geq \frac{(k+1)(k+2)}{2}\Rightarrow n_f\geq \frac{k(k-1)}{2}$
- The central composite design can be used in a <u>single</u> experiment or in a <u>sequential</u> experiment.

LMEGLME

Central Composite Designs - Cube Points

- Function of the three parts in fitting a second-order model: QME↔QME
 - cube points: estimating linear main effects and interactions LME↔ → Sts
 - center points: estimating overall quadratic main effects and $\hat{\sigma}$ (replicates)
 - star points: estimating and dealiasing linear and quadratic main effects
- Theorem. In any central composite design whose factorial portion is $a_i 2^{k-p}$ design that does not use any main effect as a defining relation, the following parameters in (2) are estimable: β_0 , β_i , β_{ii} , i = 1, ..., k, and one β_{ij} selected from each set of aliased effects for i < j. It is not possible to estimate more than one β_{ij} from each set of aliased effects.

Central Composite Designs - Cube Points

- It is interesting to note that
- even defining words of length two (for k = 2 case) are allowed and identificated words of length four are worse than words of length three.
 - Any resolution III design whose defining relation does not contain words of length four is said to have **resolution** III*.
 - Any central composite design whose factorial portion has resolution III* is a second-order design.
 - For the estimability of the parameters in the second-order model, one can only use the cube and star points of the central composite design if $\alpha \neq \sqrt{k}$. Such a design is referred to as a *composite design* and its run size is $n_f + 2k$.
 - the smallest designs without center points in the Table 11 for k=2, 3, 5, 6 and 7 have the minimal run size and are saturated.

p. 3-42

Central Composite Designs - Cube Points

Table 11: Central Composite Designs for $2 \le k \le 7$

	k	(k+1)(k+2)/2	N N-	n_f	Factorial Portion (cube points)
Small	2	6	7	2	$2^{2-1}(\mathbf{I} = AB)$
composite	2	6	9	4	2^2
design	3	10	11	4	$2_{III}^{3-1}(\mathbf{I} = ABC)$
(use o	4 , }_	10	15	8	23
1001-13gu		15	17	8	$2\frac{4-1}{ID}(I=ABD)$ MA $2\frac{1}{I}$ (I=ABCD)
design,	11 X 4	15	20	11	11 × 4 submatrix of 12—run PB design
as the cube	4 🗸	(+10)	25	16	2 ⁴
(2/2)	* 5	21	22	11	11 × 5 submatrix of 12—run PB design
	7 5	21	23	12	12 × 5 submatrix of 12-run PB design
	5 V	21 (+6)	>27	16	$2_V^{5-1}(\mathbf{I} = ABCDE)$
	6	28	29	16	$2\frac{6-2}{III^{+}}(I = ABE = CDF = ABCDEF)$
	77	36	37	22	22 × 7 submatrix given in Table 10A.2 (textbook)
	2 47	36	38	23	23 × 7 submatrix given in Table 10A.3 (textbook)
	7 Y	<u>36</u>	→47	32	$2\frac{7-2}{UI}(\mathbf{I} = ABCDF = DEG) MA$
		(+1)		24 r	run PB design

Central Composite Designs - Axial Points

- The efficiency of the parameter estimates is increased by pushing the axial points toward the extreme. The expital region.
- In general, α should be chosen between 1 and \sqrt{k} and rarely outside this range.
- For $\alpha=1$, the axial points are placed at the center of the faces of the cube.
 - The design is therefore called the *face center cube*.
 - They are the only central composite designs that require three levels.
 - They are effective designs if the design region is a cube.
- For $\alpha = \sqrt{k}$, the axial points and cube points lie on the same sphere.
 - The design is often referred to as a spherical design. $\alpha = 0$
 - They are effective designs if the design region is spherical.
 - For large k, this choice should be taken with caution.
- In general the choice of α depends on the geometric nature of and the from the practical constraints on the design region.