

Response Surface Methodology (RSM)

$$\star E(Y_x) = f(x)$$

\hat{Y}_x : predictors of $E(Y_x)$.

$$\star \sum \hat{\beta}_i g_i(x)$$

RSM
factorial
design

RSM less concerns about
① effect orthogonality,
② effect aliasing,
③ identification of significant effect.

* RSM use fixed model already contain

- Experimental study focusing on the relationship between the response and the input factors.

G. Box

$\hat{Y}_x \leftrightarrow \hat{\beta}_i$'s

more stable

meaning?

factorial
designs

find x that maximize/minimize $E(Y_x)$

predictor of
 $E(Y_x)$

- Common purposes in RSM:
 - Optimizing the response
 - Mapping the response surface over a region of interest
- Sequential experimentation strategy for optimization
 - Note: experimentation is a learning process.
- RSM is an effective tool especially when
 - input factors are quantitative,
 - there are only a few of input factors.

Ranitidine Experiment

- Consider an experiment to study three quantitative factors with up to 5 levels.

Table 1: Factors and Levels, Ranitidine Experiment

Factor	Levels
A. pH	2, 3.42, 5.5, 7.58, 9
B. voltage (kV)	9.9, 14, 20, 26, 30.1
C. α -CD (mM)	0, 2, 5, 8, 10

center point

- The design matrix and the data are given on the next page. The design differs from 2^{k-p} design in two respects :
 - 6 replicates at the center,
 - 6 runs along the three axes.

It belongs to the class of central composite designs (CCD).

Ranitidine Experiment

Table 2: Design Matrix and Response Data

Run	Factor			CBF	ln CBF
	A	B	C		
1	-1	-1	-1	17.293	2.850
2	1	-1	-1	45.488	3.817
3	-1	1	-1	10.311	2.333
4	1	1	-1	11757.084	9.372
5	-1	-1	1	16.942	2.830
6	1	-1	1	25.400	3.235
7	-1	1	1	31697.199	10.364
8	1	1	1	12039.201	9.396
9	0	0	-1.67	7.474	2.011
10	0	0	1.67	6.312	1.842
11	0	-1.68	0	11.145	2.411
12	0	1.68	0	6.664	1.897
13	-1.68	0	0	16548.749	9.714
14	1.68	0	0	26351.811	10.179
15	0	0	0	9.854	2.288
16	0	0	0	9.606	2.262
17	0	0	0	8.863	2.182
18	0	0	0	8.783	2.173
19	0	0	0	8.013	2.081
20	0	0	0	8.059	2.087

Ranitidine Experiment

The CCD has three parts ← each part appear for different purposes.

(1) *cube* (or corner) points, (2) *axial* (or star) points, (3) *center* points.

a second-order design

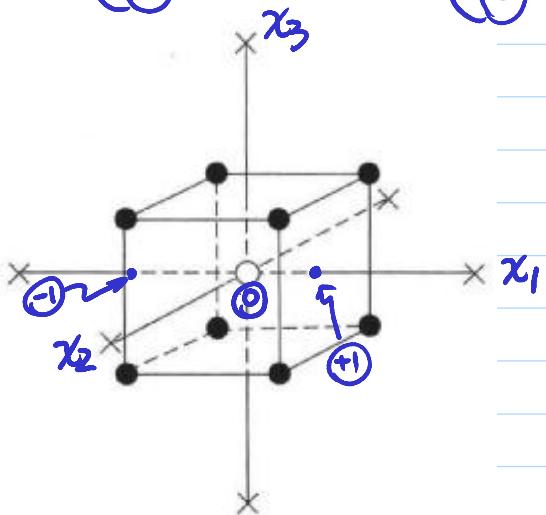


Figure 1: A Central Composite Design in Three Dimensions [cube point (dot), star point (cross), center point (circle)].

✓ **Reading:** textbook, 10.1

Sequential Nature of RSM

- Basic concepts

- For a process/system involving a response y and *input factors* X_1, \dots, X_k , model their relationship by

Hint:
Taylor expansion

where f is unknown.

$$y = f(X_1, \dots, X_k) + \epsilon, \quad E(y|x)$$

true response surface

- Locally approximate f by

$\forall \epsilon > 0, \exists \delta > 0$, s.t.

when $\|x - x_0\| < \delta$

$$|f(x) - (\text{kth-order polynomial of } x)| < \epsilon$$

where β_i 's: unknown parameters, and g_i 's: known functions of X_1, \dots, X_k

$$f(X_1, \dots, X_k) \approx \sum_{i=1}^m \beta_i \cdot g_i(X_1, \dots, X_k)$$

often use polynomial terms of x_1, \dots, x_k .

- Conduct experiments and collect data to estimate β_i 's
- Use *fitted response surface* \hat{f} to understand f :

$$\hat{f} = \sum_{i=1}^m \hat{\beta}_i \cdot g_i(X_1, \dots, X_k)$$

β_i 's: tools for approximation purpose, may not concern whether β_i 's carry physical interpretation.

Sequential Nature of RSM

- Sequential experimentation to maximize/minimize the response or to achieve a desired value of the response: $E(y|x) = C$.

RSM is effective

when # of factors

factor screening

Screening Experiment: When many variables are considered, some are

likely to be inert. Use a 2^{k-p} design or an OA.

identify important factors

Why?

efficiency consideration

eg. A, B, C, ..., I, J (10 factors)

more important.

\$1000, equally distributed to 10 factor.

use 20% to identify A & B.

80% to study effects of A & B

(c.f.)

information ↓

identify important effects.

information ↑

Y ~ A+B

Y ~ A+B+AB

Y ~ A+AB

important factors:

A & B.

- Once a small number of important factors is identified, if the

experimental region is far from the optimum (examined by curvature check), use the *first-order model*

1st-order design (2-level)

① FFD (resolution $\geq III$)

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \epsilon,$$

② orthogonal M.E. plan (1)

③ orthogonal array

to fit the data.

Sequential Nature of RSM

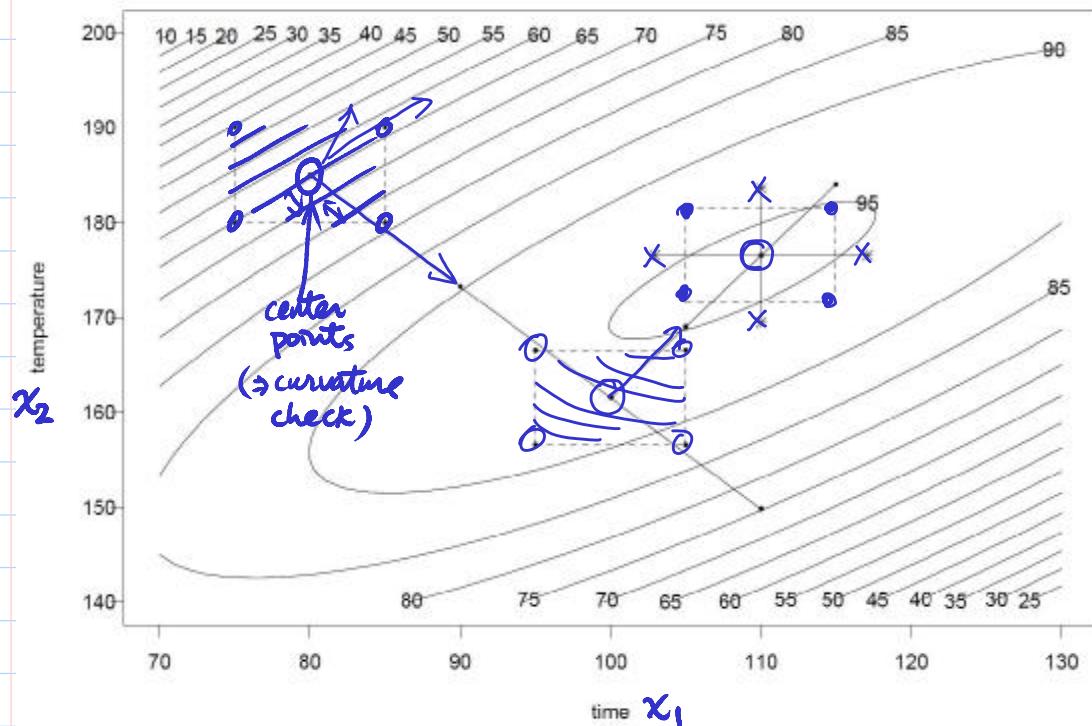
3. Based on the fitted first-order model, find the steepest ascent direction and perform a search along this direction (called **steepest ascent search**).
 - Steps 2 and 3 may be repeated until reaching the optimum region (e.g. peak of the surface).
 - Alternative to steps 2 and 3: **rectangular grid search**
4. To capture the curvature effects, use a second-order design (like the central composite design). Fit a **second-order model**

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i < j}^k \beta_{ij} x_i x_j + \sum_{i=1}^k \beta_{ii} x_i^2 + \epsilon, \quad \epsilon \sim N(0, \sigma^2 I) \quad (2)$$

to data. Use the fitted model (with insignificant terms dropped) to do *contour plots* and find the *optimum* conditions.

A graphical illustration of these steps is given on next page.

Sequential Exploration of Response Surface



✓ Reading: textbook, 10.2