

## Half-normal Plot, Layer Growth Experiment

the whole design matrix ( $S$  &  $N$ )  
can be treated as

- Define

$2^{(8+3)-4}$  regular design

with the same

defining contrast subgroup

$$M_l = (M_1 + M_2) - (M_3 + M_4), \quad M_q = (M_1 + M_4) - (M_2 + M_3), \quad M_c = (M_1 + M_3) - (M_2 + M_4),$$

given in LNp.2-14. benefit: orthogonality

model:  $y \sim \sum B_i$  (all factorial effects formed by  $S$  &  $N$ )  $+ \varepsilon$  (no replicates)

- From Figure 4, select  $D, L, HL$  as the most significant effects. adjustment factor  $L$  can be used to reduce  $\text{var}(y)$  significantly.
- How to deal with the next cluster of effects in Figure 4? Use step-down multiple comparisons. c.f.  $L$  causes larger variation reduction.
- After removing the top three points in Figure 4, make a half-normal plot (Figure 5) on the remaining points. The cluster of next four effects ( $M_l, H, CM_l, AHM_q$ ) appear to be significant.

| M | $M_e$ | $M_g$ | $M_c$ | $M_{Mg}$ |
|---|-------|-------|-------|----------|
| 1 | +1    | +     | +     |          |
| 2 | +1    | -     | -     |          |
| 3 | -     | -     | +     |          |
| 4 | -     | +     | -     |          |

coding

benefit: orthogonality

## Half-normal Plot of Factorial Effects

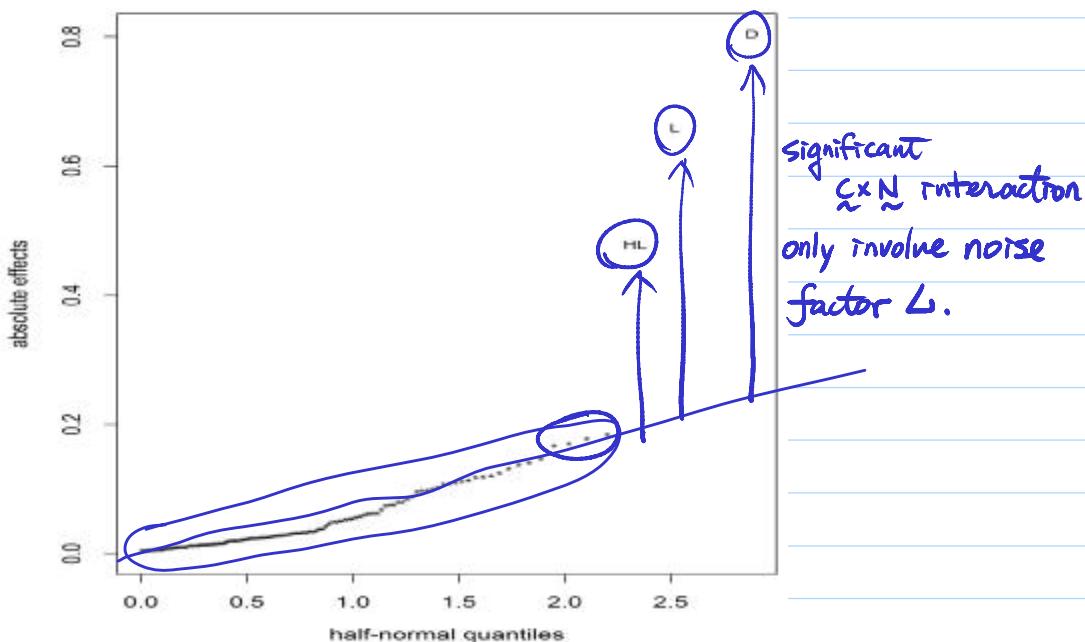


Figure 4: Half-Normal Plot of Response Model Effects, Layer Growth Experiment

## Second Half-normal Plot of Factorial Effects

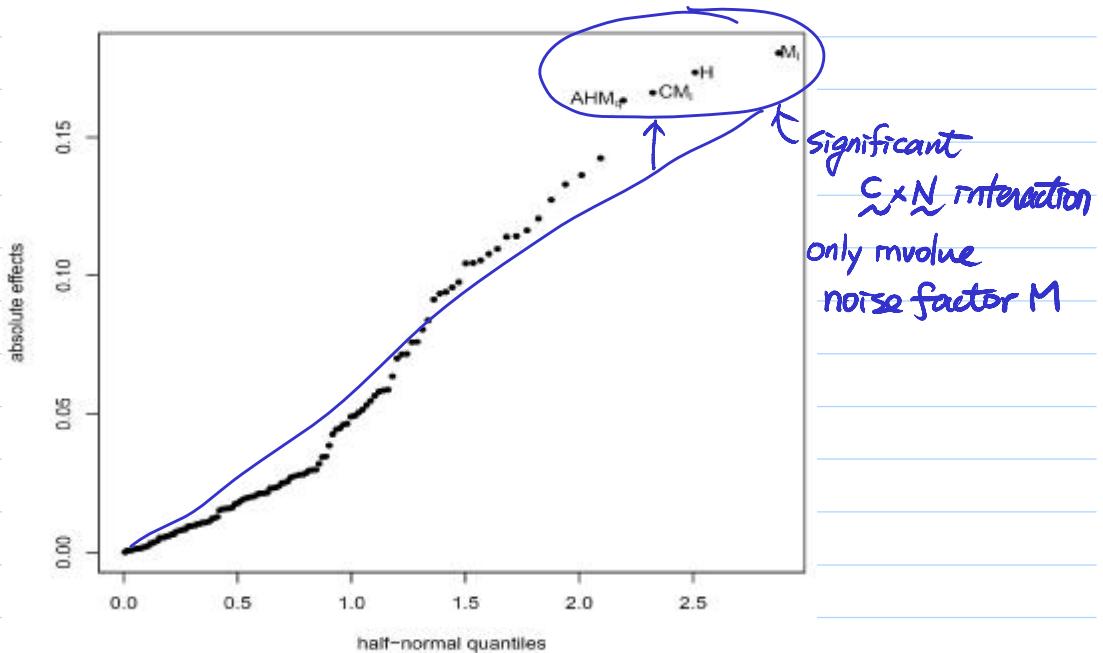
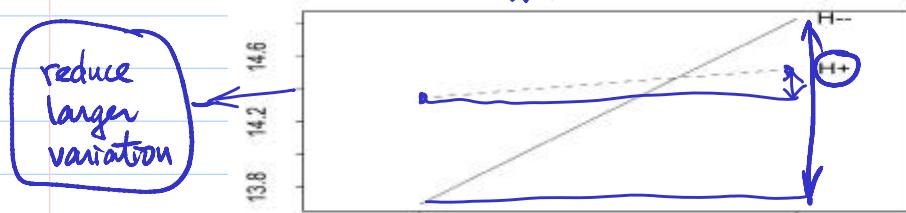


Figure 5: Second Half-Normal Plot of Response Model Effects, Layer Growth Experiment

## Control-by-noise Interaction Plots

$H \times L$



$C \times M_2$

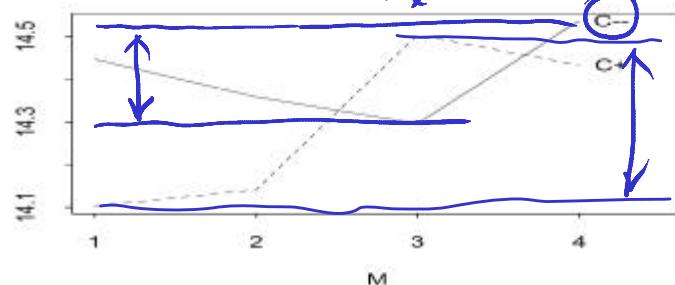


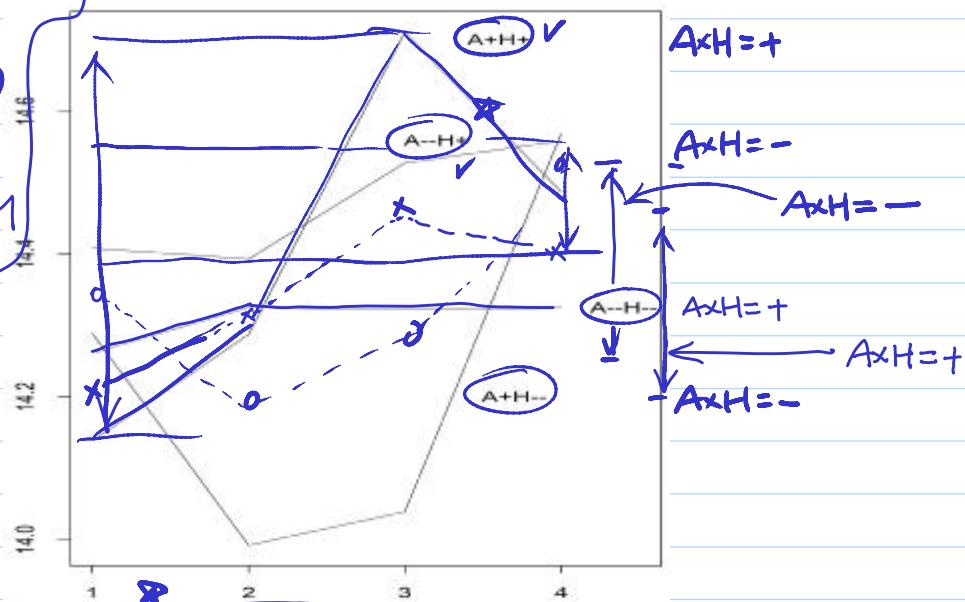
Figure 6:  $H \times L$  and  $C \times M$  Interaction Plots, Layer Growth Experiment



HL & AHM interaction  
offer physical  
interpretation of  
why variation  
caused by L & M  
related to A & M

$\nwarrow$  regarded as one factor  
 $A \times H \times M$  Plot

$(A \times H) \times M$ .



recommendation:  $\boxed{H+ C- A-} \xrightarrow{\text{CP}}$  location-dispersion modeling.

Figure 7:  $A \times H \times M$  Interaction Plot, Layer Growth Experiment

## Response Modeling, Layer Growth Experiment

- The following model is obtained:

$$\hat{y} = 14.352 + 0.402x_D + 0.087x_H + 0.330x_L - 0.090x_{M_1} \\ - 0.239x_Hx_L - 0.083x_Cx_M - 0.082x_Ax_Hx_{M_2} \quad (4)$$

*adjust  $E(y|\Sigma)$*

- Recommendations:

$H$ : - (position 2) to + (position 6)

$A$ : + (oscillating) to - (continuous)

$C$ : + (1210) to - (1220)

resulting in 37% reduction of thickness standard variation.

## Predicted Variance Model

- Assume  $L$ ,  $M_l$  and  $M_q$  are random variables, taking  $-1$  and  $+1$  with equal probabilities. This leads to

$$\begin{array}{c}
 \text{Indep.} \\
 \text{L: } \begin{array}{c} 1 \leftarrow x_2 \rightarrow \\ 2 \leftarrow x_3 \rightarrow \end{array} \quad \text{M: } \begin{array}{c} 1 \rightarrow x_4 \\ 2 \rightarrow x_5 \\ 3 \rightarrow x_6 \\ 4 \rightarrow x_7 \end{array} \\
 x_L^2 = x_{M_l}^2 = x_{M_q}^2 = x_A^2 = x_C^2 = x_H^2 = 1, \quad \begin{array}{c} M_l \\ M_q \\ M_C \end{array} = \begin{array}{cccc} 1 & + & + & + \\ 2 & + & - & - \\ 3 & - & - & + \\ 4 & - & + & - \end{array} \\
 E(x_L) = E(x_{M_l}) = E(x_{M_q}) = 0, \quad \text{Var}(x_L) = \text{Var}(x_{M_l}) = \text{Var}(x_{M_q}) = 1 - 0 = 1. \quad (5)
 \end{array}$$

$$\text{Cov}(x_L, x_{M_l}) = \text{Cov}(x_L, x_{M_q}) = \text{Cov}(x_{M_l}, x_{M_q}) = 0.$$

$$\text{Var}(x_L) = \text{Var}(x_{M_l}) = \text{Var}(x_{M_q}) = 1 - 0 = 1.$$

- From (4) and (5), we have

$$\begin{aligned}
 \mathbb{E}(y | \Sigma, N) &= (.330 - .239x_H)^2 \text{Var}(x_L) + (-.090 - .083x_C)^2 \text{Var}(x_{M_l}) \\
 &\quad + (.082x_Ax_H)^2 \text{Var}(x_{M_q}) \\
 \mathbb{E}(y | \Sigma, N) &= \text{constant} + (.330 - .239x_H)^2 + (-.090 - .083x_C)^2 + (.082)^2 x_A^2 x_H^2 \\
 &= \text{constant} - 2(.330)(.239)x_H + 2(.090)(.083)x_C + 0.087x_H^2. \\
 &= \text{constant} - .158x_H + .015x_C.
 \end{aligned}$$

Note: of  $x_{M_q}$   
ME is in the model, the term can be used to reduce variance

- Choose  $H+$  and  $C-$ . But factor A is not present here. (Why? See explanation on p. 532).

✓ Reading: textbook, 11.5

## Estimation Capacity for Cross Arrays

- Example 1. Control array is a  $2^{3-1}_{III}$  design with  $I = ABC$  and the noise array is a  $2^{3-1}_{III}$  design with  $I = abc$ . The resulting cross array is a 16-run  $2^{6-2}_{III}$  design with  $I = ABC = abc = ABCabc$ . Easy to show that all 9 control-by-noise interactions are clear, (but not the 6 main effects). This is indeed a general result stated next.

$$\begin{array}{c}
 \text{C} \times \text{C} \text{ 2-factor} \times \\
 \text{N} \times \text{N} \text{ 2-factor}
 \end{array}$$

**Theorem:** Suppose a  $2^{k-p}$  design  $d_C$  is chosen for the control array, a  $2^{m-q}$  design  $d_N$  is chosen for the noise array, and a cross array, denoted by

$d_C \otimes d_N$ , is constructed from  $d_C$  and  $d_N$ .

- If  $\alpha_1, \dots, \alpha_A$  are the estimable factorial effects (among the control factors) in  $d_C$  and  $\beta_1, \dots, \beta_B$  are the estimable factorial effects (among the noise factors) in  $d_N$ , then  $\alpha_i, \beta_j, \alpha_i \beta_j$  for  $i = 1, \dots, A$ ,  $j = 1, \dots, B$  are estimable in  $d_C \otimes d_N$ .

- All the  $km$  control-by-noise interactions (i.e., two-factor interactions between a control factor main effect and a noise factor main effect) are clear in  $d_C \otimes d_N$ .

\* In general, C-type words  $U_1, \dots, U_{2^P-1}$  for  $d_C \leftarrow 2^{k-p}$ , resolution  $\geq 3$

N-type words  $U_1, \dots, U_{2^8-1}$  for  $d_N \leftarrow 2^{m-8}$ , resolution  $\geq 3$   
the defining contrast subgroup for  $d_C \times d_N \leftarrow 2^{(k+m)-(p+8)}$

$$\{ I, U_i, U_j, U_i U_j \mid i=1, \dots, 2^P-1; j=1, \dots, 2^8-1 \} \dots (*)$$

# of words =  $1 + (2^P-1) + (2^8-1) + (2^P-1)(2^8-1) = 2^{P+8}$

no need to restrict them as regular

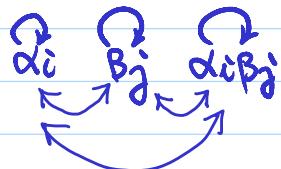
\* For Thm (LNp.2-27) (i):

model 1:  $y \sim \beta_0 f_0(\xi) + \beta_1 f_1(\xi) + \dots + \beta_{m-1} f_{m-1}(\xi)$ : an estimable model for  $d_C$   
model 2:  $y \sim \gamma_0 g_0(N) + \gamma_1 g_1(N) + \dots + \gamma_{P-1} g_{P-1}(N)$ : : : : :  $d_N$

Then,  $y \sim \sum_{0 \leq i \leq P-1} \sum_{0 \leq j \leq m-1} \alpha_{ij} f_i(\xi) \cdot g_j(N)$  is an estimable model for  $d_C \times d_N$

Why? Hint: interactions are defined by conditional main effects

\* proof of Thm (LNp.2-27) (i).  $\Rightarrow \{\alpha_i, \beta_j, \alpha_i \beta_j\}$  is estimable.



①  $\alpha_i \leftrightarrow \alpha_i' \Rightarrow \alpha_i \alpha_i' \notin (*)$

②  $\alpha_i \leftrightarrow \alpha_i' \beta_j \Rightarrow \alpha_i \alpha_i' \beta_j \notin (*)$

\* proof of Thm (LNp.2-27) (ii).

- if a  $C \times N$  2fi appear in  $U_i U_j$  (e.g. Aa appear in ABCabc)

$\Rightarrow C \times N$  2fi aliased with 4-fi or higher.

- for C-type words, say  $I=ABC$

$$Aa = (ABC) \cdot Aa = BCa$$

- for N-type words, say  $I=abc$

$$Aa = (abc) \cdot Ad = Abc$$

length  $\geq 6$  ( $\because \text{length}(U_i) \geq 3$   
 $\text{length}(U_j) \geq 3$ )

at most aliased with 3 fi.

\* Thm (LNp.2-27) can be generalized to  $r^{k-p}$  design,  $r$ : prime #.

\* Thm (LNp.2-27) (i) is valid for  $d_C, d_N$  not regular designs.  
still

construct design matrix for control factors & noise factors separately

**Cross Arr**

# Cross Arrays or Single Arrays?

use all  
(control + noise)  
factors to construct  
a design matrix

- Three control factors  $A, B, C$  and two noise factors  $a, b$ :  $2^3 \times 2^2$  design, allowing all main effects and two-factor interactions to be clearly estimated.

modeling:  $y \sim \text{all ME} + \text{all 2fi}$

- Use a single array with 16 runs for all five factors: a resolution  $V2^{5-1}$  design with  $I = ABCab$  or  $I = -ABCab$ , all main effects and two-factor interactions are clear. (See Table 7)

- Single arrays can have smaller runs, but cross arrays are easier to use and interpret.

## dispersion analysis

p. 2-29

## ~~$I=ABCab$~~ **32-run Cross Array and 16-run Single Arrays**

24 full

| A | B | C | a | b | ABCa |
|---|---|---|---|---|------|
| t | + | + | + | + |      |
| + | + | + | - | - |      |
| + | + | - | + | + |      |
| + | + | - | + | + |      |
| - | - | - | - | + |      |

ABCD  
a + -

Runs A

consider alternative exit.

A,B,C,D = ~~1000000~~

a: noise  
use  $2^{5-1}$   
with

I=ABCDA

10 of 10

—

Table 7: 32-Run Cross Array

cannot use location-dispersion analysis

not performed under the same settings of Noise factors

The diagram illustrates a 2D grid of 12 nodes arranged in a 3x4 pattern. The nodes are labeled with symbols: (+, +), (+, -), (-, +), (-, -), (x, x), (x, -), (-, x), (-, x), (o, o), (●, ●), (●, o), and (o, ●). The first two columns are on the left boundary, the last two are on the right boundary, and the middle two are in the interior. The top boundary is labeled *a* and the bottom *b*. The left boundary is labeled *B* and the right *C*. A vertical arrow on the right indicates a 3D perspective view of a rectangular domain with boundary conditions. The top face of the rectangle has nodes with symbols (+, +), (+, -), (-, +), and (-, -). The bottom face has nodes with symbols (x, x), (x, -), (-, x), and (-, x). The left face has nodes with symbols (+, +), (+, -), (-, +), and (-, -). The right face has nodes with symbols (o, o), (●, ●), (●, o), and (o, ●). A bracket on the right side of the 3D view is labeled "c.p.".

$$\bullet : \mathbf{I} = ABCab, \circ : \mathbf{I} = -ABCab,$$

▼ **Reading:** textbook, 11.6, 11.7

## Comparison of Cross Arrays and Single Arrays

Cross array:  $I = ABC = abc = ABCabc, 2^{6-2}_{III}$

eligible effect:  $A, B, C, a, b, c$       clear:  $Aa, Ab, Ac, Ba, Bb, Bc, Ca, Cb, Cc$

$A, B, C, a, b, c$

minimum aberration

$a, b, c, Aa, Ba, Ca$

$AB, AC, BC$

$A, B, C, Ab, Bb, Cb, Ac, Bc, Cc$

$2^{6-2}_{IV}$  design

- Example 1 (continued) An alternative is to choose a single array  $2^{6-2}_{IV}$  design with  $I = ABCa = ABbc = abcC$ . This is not advisable because no 2fi's are clear and only main effects are clear. (Why? We need to have some clear control-by-noise interactions for robust optimization.) A better one is to use a  $2^{6-2}_{III}$  design with  $I = ABCa = abc = ABCbc$ . It has 9 clear effects:  $A, B, C, Ab, Ac, Bb, Bc, Cb, Cc$  (3 control main effects and 6 control-by-noise interactions).

- Inadequacy of resolution & minimum aberration (single array) ← they do not distinguish the two types of factors. ← Recall: another example treatment & block factors
- modification of effect ordering principle

$$C == N == C \times N \gg C \times C == C \times C \times N \gg N \times N$$

▼ Reading: textbook, 11.8