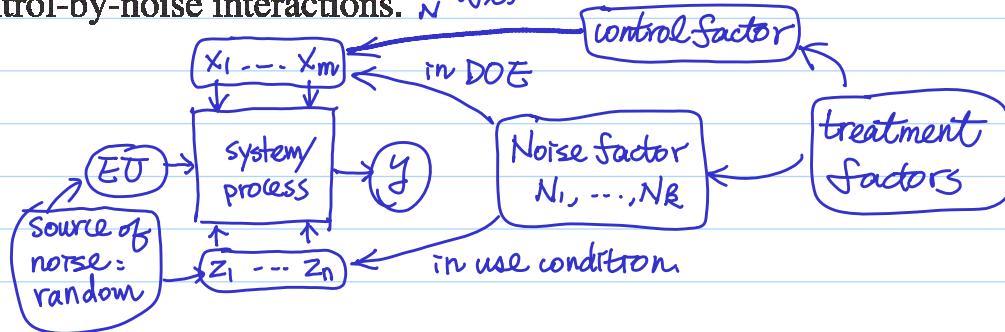


Find \bar{X} , s.t. $\text{Var}(Y_X)$ is minimizedor reducedvariance over what?

- Statistical/engineering method for product/process improvement (G. Taguchi). Over the random change in noise factors


DOE terminology: Similar to "factor".^{p. 2-1}**Robust Parameter Design**

pioneered by Taguchi

quality

- Two types of factors in a system (product/process):
 - control factors: once chosen, values remain fixed.
 - noise factors: hard-to-control during normal process or usage. but controllable (can be systematically varied) in DOE

- Robust Parameter design (RPD or PD): choose control factor settings to make response less sensitive (i.e. more robust) to noise variation; exploiting control-by-noise interactions. $\text{Var}(Y_X) \approx 0$

p. 2-2

A Robust Design Perspective of Layer-growth and Leaf Spring Experiments

CH4 (full factorial)

CH5 (fractional factorial)

- The original AT & T layer growth experiment had 8 control factors, 2 noise factors (location and facet). Goal was to achieve uniform thickness around $14.5 \mu\text{m}$ over the noise factors. See Tables 1 and 2. $\min_{\text{z}} \text{Var}(Y_X)$ nominal-the-best. in use condition
- The original leaf spring experiment had 4 control factors, 1 noise factor (quench oil temperature). The quench oil temperature is not controllable; with efforts it can be set in two ranges of values 130-150, 150-170. Goal is to achieve uniform free height around 8 inches over the range of quench oil temperature. See Tables 3 and 4. nominal-the-best
- Must understand the role of *noise factors* in achieving *robustness*.

Layer Growth Experiment: Factors and Levels

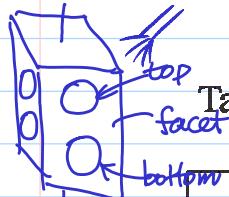


Table 1: Factors and Levels, Layer Growth Experiment

	Control Factor	treatment factors		Level
		-	+	
A.	susceptor-rotation method	continuous	oscillating	
B.	code of wafers	668G4	678D4	
C.	deposition temperature(°C)	1210	1220	
D.	deposition time	short	long	
E.	arsenic flow rate(%)	55	59	
F.	hydrochloric acid etch temperature(°C)	1180	1215	
G.	hydrochloric acid flow rate(%)	10	14	
H.	nozzle position	2	6	
Noise Factor		Q: Why should they be treated as noise factors?		Level
		-	+	
L.	location	bottom	top	
M.	facet	1 2	3 4	

4 factors discussed in CH4

C.F. (Control Factor)

all 2 level

1 level

1 4 level

treated as pure

Layer Growth Experiment: Thickness Data

replicates in CH4 & 5

a design matrix d_N for noise factor

Table 2: Cross Array and Thickness Data, Layer Growth Experiment

2x4 full factorial

Control Factor	Noise Factor														
	L-Bottom				L-Top										
A	B	C	D	E	F	G	H	M-1	M-2	M-3	M-4	M-1	M-2	M-3	M-4
-	-	-	-	-	-	-	-	14.2908	14.1924	14.2714	14.1876	15.3182	15.4279	15.2657	15.4056
-	-	-	-	-	-	-	-	14.8030	14.7193	14.6960	14.7635	14.9306	14.8954	14.9210	15.1349
-	-	-	-	-	-	-	-	13.8793	13.9213	13.8532	14.0849	14.0121	13.9386	14.2118	14.0789
-	-	-	-	-	-	-	-	13.4054	13.4788	13.5878	13.5167	14.2444	14.2573	14.3951	14.3724
-	-	-	-	-	-	-	-	14.736	14.0306	14.1398	14.0796	14.1492	14.1654	14.1487	14.2765
-	-	-	-	-	-	-	-	13.2539	13.3338	13.1920	13.4430	14.2204	14.3028	14.2689	14.4104
-	-	-	-	-	-	-	-	14.0623	14.0888	14.1766	14.0528	15.2969	15.5209	15.4200	15.2077
-	-	-	-	-	-	-	-	14.3068	14.4055	14.6780	14.5811	15.0100	15.0618	15.5724	15.4668
-	-	-	-	-	-	-	-	13.7259	13.2934	12.6502	13.2666	14.9039	14.7952	14.1886	14.6254
-	-	-	-	-	-	-	-	13.8953	14.5597	14.4492	13.7064	13.7546	14.3229	14.2224	13.8209
-	-	-	-	-	-	-	-	14.2201	14.3974	15.2757	15.0363	14.1936	14.4295	15.5537	15.2200
-	-	-	-	-	-	-	-	13.5228	13.5828	14.2822	13.8449	14.5640	14.4670	15.2293	15.1099
-	-	-	-	-	-	-	-	14.5335	14.2492	14.6701	15.2799	14.7437	14.1827	14.9695	15.5484
-	-	-	-	-	-	-	-	14.5676	14.0310	13.7099	14.6375	15.8717	15.2330	14.9810	16.0001
-	-	-	-	-	-	-	-	12.9012	12.7071	13.1484	13.8940	14.2537	13.8268	14.1332	15.1681
-	-	-	-	-	-	-	-	13.9532	14.0830	14.1119	13.5963	13.8136	14.0745	14.4813	13.6862

2⁸⁻⁴ FFD

$D = -ABC, F = ABE, G = ACE$

$H = BCE$

a design matrix dc for control factor

no replicates

For A-H, L, M, design matrix $dc \times dn$

$A - H, L, M$

$\begin{array}{c} dn \\ dn \end{array} \rightarrow 8 \text{ run}$

$\begin{array}{c} dn \\ dn \end{array} \rightarrow 8 \text{ run}$

$= 16 \times 8 = 128$

Q: What's the difference **Leaf Spring Experiment** between ① pure replicates

② replicates Table 3: Factors and Levels, Leaf Spring Experiment over different setting of noise factors

Ans: for ①, we cannot be sure that the variation of the 6(8) replicates can reflect the variation caused by ① (L, M).

in ②, Q is systematically varied to reflect its

Table 4: Cross Array and Height Data, Leaf Spring Experiment

causing variation in y.

dc: 2^{4-1} II,
 $I = BCDE$

Control Factor				Noise Factor	
B	C	D	E	Q^-	Q^+
-	+	+	-	7.78	7.78
+	+	+	+	8.15	8.18
-	-	+	+	7.50	7.56
+	-	+	-	7.59	7.56
-	+	-	+	7.94	8.00
+	+	-	-	7.69	8.09
-	-	-	-	7.56	7.62
+	-	-	+	7.56	7.81

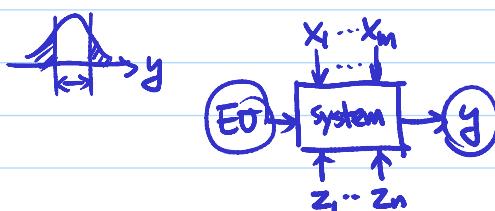
$I_DN: 2^4$ full factorial

For B, C, D, E, Q
design matrix

2^{5-1} II

$I = BCDE$

3 replicates
for each run (16 runs)


✓ Reading: textbook, 11.1

quality improvement.

Strategies for Variation Reduction

- Sampling inspection: passive, sometimes last resort. 抽樣稽查
- Control charting and process monitoring: can remove special causes. If the process is stable, it can be followed by using a designed experiment. SPC for system changing over time \rightarrow detect unstable condition
- Blocking, covariate adjustment: passive measures but useful in reducing variability, not for removing root causes. not a method to reduce total variation in use condition, but, they can be treated as noise factor.
- Reducing variation in noise factors: effective as it may reduce variation in the response but can be expensive. Better approach is to change control factor settings (cheaper and easier to do) by exploiting control-by-noise interactions, i.e., use robust parameter design!

However, SPC cannot detect what is

$$\begin{aligned}
 Y &= \mathbf{x}_1 \beta_1 + \varepsilon \\
 Y &= \mathbf{x}_1 \beta_1 + \mathbf{x}_2 \beta_2 + \varepsilon' \\
 \varepsilon' &\leftarrow \text{block(covariate) effects} \\
 \text{Var}(\varepsilon) &\geq \text{Var}(\varepsilon')
 \end{aligned}$$

✓ Reading: textbook, 11.2

① $\in Z_1, \dots, Z_n$
 ② source of "large" variation in y .

Types of Noise Factors

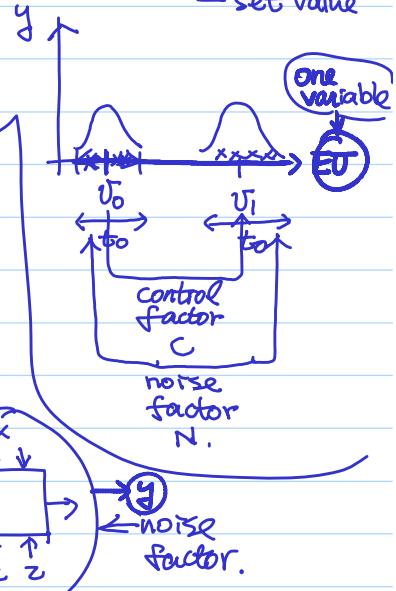
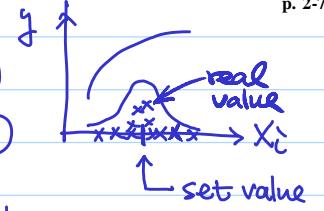
1. Variation in process parameters.

2. Variation in product parameters.

3. Environmental variation.

4. Load Factors.

5. Upstream variation.



6. Downstream or user conditions.

7. Unit-to-unit and spatial variation.

\rightarrow blocks

8. Variation over time.

9. Degradation.

- Traditional design uses 7 and 8.

▼ Reading: textbook, 11.3

Variation Reduction Through RPD

$x \& z$ has interaction on y .

- Suppose $y = f(x, z)$, x control factors and z noise factors. If x and z interact in their effects on y , then the $\text{var}(y)$ can be reduced either by reducing $\text{var}(z)$ (i.e. method 4 on p.2-6) or by changing the x values (i.e., RPD).

- An example:

treat z as r.v.

$$\text{Var}_z(y/x) = (\beta + \gamma x_2)^2 + \sigma^2$$

$$E_z(y/x) = \mu + \alpha x_1$$

use control

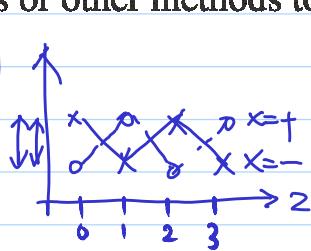
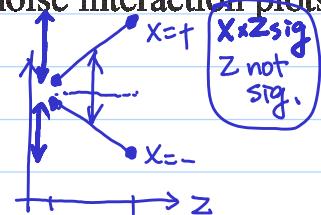
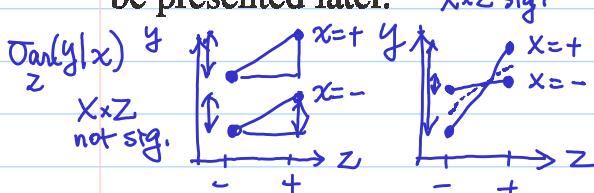
treat z as r.v.

$$y = \mu + \alpha x_1 + \beta z + \gamma x_2 z + \epsilon,$$

$$= \mu + \alpha x_1 + (\beta + \gamma x_2) z + \epsilon.$$

N

ϵ




ϵ_{new}

to do E

$$E(y) = \mu + \alpha x_1 + (\beta + \gamma x_2) z$$

$$\text{Var}(y) = \text{Var}(\epsilon) = \sigma^2$$

By choosing an appropriate value of x to reduce the coefficient $\beta + \gamma x_2$, the impact of z on y can be reduced. Since β and γ are unknown, this can be achieved by using the control-by-noise interaction plots or other methods to be presented later.

