Robust Parameter Design

e Statistical/engineering method for product/process improvement (G.
Taguchi).
e Two types of factors in a system (product/process):
— control factors: once chosen, values remain fixed.
— noise factors: hard-to-control during normal process or usage.
e Robust Parameter design (RPD or PD): choose control factor settings to

make response less sensitive (i.e.more robust) to noise variation; exploiting
control-by-noise interactions.
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A Robust Design Perspective of Layer-growth and
Leaf Spring Experiments

e The original AT & T layer growth experiment had 8 control factors, 2 noise
factors (location and facet). Goal was to achieve uniform thickness around
14.5 um over the noise factors. See Tables 1 and 2.

e The original leaf spring experiment had 4 control factors, 1 noise factor
(quench oil temperature). The quench oil temperature is not controllable;
with efforts it can be set in two ranges of values 130-150, 150-170. Goal is
to achieve uniform free height around 8 inches over the range of quench oil
temperature. See Tables 3 and 4.

e Must understand the role of noise factors in achieveing robustness.




Layer Growth Experiment: Factors and Levels

Table 1: Factors and Levels, Layer Growth Experiment

Level
Control Factor — +
A. susceptor-rotation method continuous  oscillating
B. code of wafers 668G4 678D4
C. deposition temperature("C) 1210 1220
D. deposition time short long
E. arsenic flow rate(%) 55 59
F. hydrochloric acid etch temperature(°C) 1180 1215
G. hydrochloric acid flow rate(%) 10 14
H. nozzle position 2 6
Level
Noise Factor — +
L. location bottom top
M. facet 1 2 3 4
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Layer Growth Experiment: Thickness Data
Table 2: Cross Array and Thickness Data, Layer Growth Experiment
Noise Factor
Control Faclor L-Bottom L-Top

A B C D E F G H M-1 M-2 M-3 M-4 M-1 M-2 M-3 M-4
- — — + — — — — 14.2908 14.1924 14.2714 14.1876 153182 15.4279 15.2657 15.4056
- - - + + + + =+ 14.8030 14,7193 14.6960 14.7635 14.9306 14.8954 14.9210 15.1349
- - + - - - + + 13.8793 13.9213 13.8532 14.0849 14.0121 13.9386 14.2118 14.0789
- - + - + + — — 13.4054 13.4788 13.5878 135167 14.2444 14.2573 14.3951 14.3724
- + — - — + — + 14.1736 14.0306 14.1398 14.0796 14.1492 14.1654 14.1487 14.2765
- + — - + — + - 13.2539 13.3338 13.1920 13.4430 14.2204 14.3028 14.2689 14.4104
- + + + - + + - 14.0623 14.0888 14.1766 14.0528 15.2969 15.5209 15.4200 15.2077
- + + + + — — + 14.3068 14.4055 14.6780 145811 15.0100 15.0618 15.5724 15.4668
+ — — - — + + - 13.7259 13.2934 12.6502 13.2666 14.9039 14.7952 14.1886 14.6254
+ — — - + — — + 13.8953 14.5597 14.4492 13.7064 13.7546 14.3229 14.2224 13.8209
+ — + + — + — + 14.2201 14.3974 15.2757 15.0363 14.1936 14.4295 15.5537 15.2200
+ — + + + — + — 13.5228 13.5828 14.2822 13.8449 14.5640 14.4670 15.2293 15.1099
+ + - + - — + + 14.5335 14.2492 14.6701 15.2799 14.7437 14,1827 14.9695 15.5484
+ + — + + + — - 14.5676 14.0310 13.7099 14.6375 15.8717 15.2239 14.9700 16.0001
+ + + = - — — - 12,9012 12.7071 13.1484 13.8940 14.2537 13.8368 14.1332 15.1681
+ + + - + + + + 13.9532 14.0830 14.1119 13.5963 13.8136 14.0745 14.4313 13.6862




Table 3: Factors and Levels, Leaf Spring Experiment

Table 4: Cross Array and Height Data, Leaf Spring Experiment

Leaf Spring Experiment

Level
Control Factor - +
B. high heat temperature {°F) 1840 1880
C. heating time (seconds) 23 25
D. transfer time (scconds) 10 12
E. hold down time (seconds) 2 3
Level
Noisc Factor - +
0. quench oil temperature (°F) 130-150 150-170

Control Factor Noise Factor

c D E o ot

+ + — 7.78 7.78 7.81 7.50 7.25 7.12
+ + + 8.15 8.18 7.88 7.88 7.88 7.44
- + + 7.50 7.56 7.50 7.50 7.56 7.50
— + — 7.59 7.56 7.75 7.63 7.75 7.56
+ — + 7.94 8.00 7.88 7.32 7.44 7.44
+ — - 7.69 8.09 8.06 7.56 7.69 7.62
— — — 7.56 7.62 7.44 7.18 7.18 7.25
- — + 7.56 7.81 7.69 7.81 7.50 7.59

Vv Reading: textbook, 11.1

Strategies for Variation Reduction

e Sampling inspection: passive, sometimes last resort.

e Control charting and process monitoring: can remove special causes. If
the process is stable, it can be followed by using a designed experiment.

e Blocking, covariate adjustment: passive measures but useful in reducing
variability, not for removing root causes.

e Reducing variation in noise factors: effective as it may reduce variation in

the response but can be expensive. Better approach is to change control

factor settings (cheaper and easier to do) by exploiting control-by-noise

interactions, i.e., use robust parameter design!

Vv Reading: textbook, 11.2




Types of Noise Factors

1. Variation in process parameters.
2. Variation in product parameters.
3. Environmental variation.

4. Load Factors.

et

Upstream variation.

Downstream or user conditions.

N o

Unit-to-unit and spatial variation.
8. Variation over time.
9. Degradation.

e Traditional design uses 7 and 8.

Vv Reading: textbook, 11.3

Variation Reduction Through RPD

e Suppose y = f(x,z), x control factors and z noise factors. If x and z interact
in their effects on y, then the var(y) can be reduced either by reducing
var(z) (i.e. method 4 on p.2-6) or by changing the x values (i.e., RPD).

e An example:

y = u+ox;+pPz+y0nz+e,
= u+ox;+(B+yn)z+e

By choosing an appropriate value of x to reduce the coefficient B+ yx;, the
impact of z on y can be reduced. Since 3 and Y are unknown, this can be
achieved by using the control-by-noise interaction plots or other methods to
be presented later.




p. 29

Exploitation of Nonlinearity

e Nonlinearity between y and x can be exploited for robustness if X¢, nominal values
of x, are control factors and deviations of x around xq are viewed as noise factors
(called internal noise). Expand y = f(x) around Xg,

of
ya f(xo)+ ) E (xi — xi0)
i xl Xi0
(1)
This leads to
o\
2 2
-~ S G;,
; ( ox; x;o) l
where 62 = var(y), 6 = var(x;), each component x; has mean x;y and variance 67.

e From (1), it can be seen that 6> can be reduced by choosing x;y with a smaller slope
g—)é L This is demonstrated in Figure 1. Moving the nominal value a to b can
reducloe var(y) because the slope at b is more flat. This is a parameter design step.
On the other hand, reducing the variation of x around a can also reduce var(y). This

is a tolerance design step.
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Exploitation of Nonlinearity to Reduce Variation

Vv [response)

= = — b e— * x (design parameter)

Figure 1: Exploiting the Nonlinearity of f(x) to Reduce Variation
Vv Reading: textbook, 11.4
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Cross Array and Location-Dispersion Modeling

e Cross array = control array X noise array,
control array = array for control factors,

noise array = array for noise factors.

e Location-dispersion modeling

— compute Vj, sl-2 based on the noise settings for the i control setting,

— analyze y; (location), and In 51'2 (dispersion), identify significant location

and dispersion effects.

p. 2-12

Two-step Procedures for Parameter Design
Optimization

e Two-Step Procedure for Nominal-the-Best Problem

(i) select the levels of the dispersion factors to minimize dispersion,
(ii) select the level of the ad justment factor to bring the location on target .

2

e Two-Step Procedure for Larger-the-Better and Smaller-the-Better Problems

(i) select the levels of the location factorsto maximize (or minimize)

the location,
(3)

(ii) select the levels of the dispersion factors that are not location

factors to minimize dispersion.

Note that the two steps in (3) are in reverse order from those in (2).
Reason: It is usually harder to increase or decrease the response y in the latter
problem, so this step should be the first to perform.




p. 2-13

Analysis of Layer Growth Experiment

e From the y; and Ins? columns of Table 5, compute the factorial effects for
location and dispersion respectively. (These numbers are not given in the
book.) From the half-normal plots of these effects (Figure 2), D is
significant for location and H, A for dispersion.

y = 14.352+0.402xp,
= —1.822+0.619x4 —0.982xy.

a3

e Two-step procedure:
(i) choose A at the “—" level (continuous rotation) and H at the “+” level
(nozzle position 6).
(i1) By solving

v =14.35240.402xp = 14.5,

choose xp= 0.368.
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Layer Growth Experiment: Analysis Results

Table 5: Means, Log Variances and SN Ratios, Layer Growth Experiment

Control Factor

A B ¢ D E F G H 7 Ins? Iny? i;

- - == === | 1479 -1.018 5389 6.41
- - - 4+ 4+ + 4+ 4 | 1480 3879 5397 9.28
- - = == 44| 1400 4205 5278 9.48
- - + - 4+ o+ = = | 1391  -1.623 5265 6.89
-+ = = =+ = 4| 1415 5306 5299 10.60
- 4+ == =+ = | 1380 1236 5250 6.49
-+ o+ o+ =+ 4 = | 1473 0760 5380 6.14
-+ o+ 4+ o+ = =+ | 1480 1503 5401 6.90
+ - - - = 4+ 4 = | 1393 0383 5268 5.65
- = 4 = = 4| 1409 2380 5291 747
+ - 4+ 4+ -+ =+ | 141 1238 5388 6.63
+ -+ 4+ 4+ =+ = | 1433 0868 5324 6.19
+ 4+ - 4+ = = 4 4+ | 147 1483 5386 6.87
o e 1488 0418 5400 5.82
+ o+ o+ - = = — | 1376 0418 5243 5.66
+ 4+ o+ =+ o+ o+ o+ | 1397 2636 5274 7.91
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Layer Growth Experiment: Plots
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Figure 2: Half-Normal Plots of Location and Dispersion Effects, Layer Growth

Experiment
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Analysis of Leaf Spring Experiment

e Based on the half-normal plots in Figure 3, B, C and E are significant for
location, C is significant for dispersion:

= 7.6360+0.1106xp + 0.0881xc + 0.0519xg,
= —3.6886+ 1.0901xc.

Sty

[a\)d

e Two-step procedure:
(1) choose C at —.
(i) With xc = —1, $¥=7.5479+0.1106xp + 0.0519xf.

To achieve ¥ = 8.0, xp and xg must be chosen beyond +1, 1.e.,

xp = xg = 2.78. This is too drastic, and not validated by current data. An
alternative is to select xpg = xg = xc = +1 (not to follow the two-step
procedure), then y=7.89 is closer to 8. (Note that § = 7.71 with B, C_E )
Reason for the breakdown of the 2-step procedure: its second step cannot
achieve the target 8.0.




Leaf Spring Experiment: Analysis Results

Table 6: Means and Log Variances, Leaf Spring Experiment

Control Factor

B C D E| %  Ing

- + + — | 7540 -2.4075
+ + 4+ 4+ | 7902 -2.6488
- — 4+ 4+ | 7520 -6.9486
+ — 4+ — | 7640 -4.8384
- + = 4+ | 7670 -2.3987
+ + — — | 7785 -29392
- - = = 7372 -3.2697
+ — = + | 7.660 -4.0582
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Leaf Spring Experiment: Plots
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Figure 3: Half-Normal Plots of Location and Dispersion Effects, Leaf Spring

Experiment
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Response Modeling and Control-by-Noise
Interaction Plots

Response Model: model y;; directly in terms of control, noise effects and
control-by-noise interactions.

— half normal plot of various effects.
— regression model fitting, obtaining V.

Make control-by-noise interaction plots for significant effects in ¥, choose
robust control settings at which y has a flatter relationship with noise.

Compute Var(§) with respect to variation in the noise factors. Call Var(¥)
the transmitted variance model. Use it to identify control factor settings
with small transmitted variance.

p. 2-20

Half-normal Plot, Layer Growth Experiment

Define
M= (M +M,)— (Mz+M,),

My = (Mi +My) — (Mz+M3),
M, = (M +M3)— (M) +My),

From Figure 4, select D, L, HL as the most significant effects.

How to deal with the next cluster of effects in Figure 47 Use step-down
multiple comparisons.

After removing the top three points in Figure 4, make a half-normal plot
(Figure 5) on the remaining points. The cluster of next four effects
(M;,H,CM;,AHM ) appear to be significant.
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Half-normal Plot of Factorial Effects
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Figure 4: Half-Normal Plot of Response Model Effects, Layer Growth Experi-
ment
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Second Half-normal Plot of Factorial Effects
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Figure 5: Second Half-Normal Plot of Response Model Effects, Layer Growth
Experiment




Control-by-noise Interaction Plots
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Figure 6: H x L and C x M Interaction Plots, Layer Growth Experiment
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Figure 7: A x H x M Interaction Plot, Layer Growth Experiment
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Response Modeling, Layer Growth Experiment

e The following model is obtained:

y = 14.352+0.402xp +0.087xy +0.330x,, — 0.090xy,
—0.239xgx;, — 0.083xcxp, — 0.082xAxHqu. 4)

e Recommendations:
— (position 2) to + (position 6)
A: + (oscillating) to — (continuous)
C: + (1210) to — (1220)
resulting in 37% reduction of thickness standard variation.

Predicted Variance Model P. 225

e Assume L, M; and M, are random variables, taking —1 and +1 with equal
probabilities. This leads to

2_ 2 _ 2 2 _ 2
AL =Xy = *m, = X4 = Ac

E(xr) = E(xm) = E(xm

Cov(xp,xy,) = Cov(xL,qu) = Cov(le,qu) =0.

=

5)

e From (4) and (5), we have

Var() = (.330—.239xy)*Var(x) + (—.090 — .083xc)*Var(xy,)
—i—(.082xAxH)2Var(qu)
—  constant 4 (.330 — .239x5)” 4 (—.090 — .083x¢)?
= constant — 2(.330)(.239)xg +2(.090)(.083)xc
= constant —.158xy +.015x¢.

e Choose H+ and C—. But factor A is not present here. (Why? See

explanation on p. 532).
Vv Reading: textbook, 11.5
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Estimation Capacity for Cross Arrays

e Example 1. Control array is a 2;’1;1 design with I = ABC and the noise array
is a 23! design with T = abe. The resulting cross array is a 16-run 25,2
design with I = ABC = abc = ABCabec. Easy to show that all 9
control-by-noise interactions are clear, (but not the 6 main effects). This is
indeed a general result stated next.

Theorem: Suppose a 25~7 design dc is chosen for the control array, a 2”4
design dy is chosen for the noise array, and a cross array, denoted by
dc ®dy, 1s constructed from d¢ and dy.

() If aq,...,0 are the estimable factorial effects (among the control
factors) in d¢ and By, ..., Pp are the estimable factorial effects (among
the noise factors) in dy, then o;, 3, 0;p; fori=1,... A, j=1,...,Bare
estimable in de K dy.

(ii) All the km control-by-noise interactions (i.e., two-factor interactions

between a control factor main effect and a noise factor main effect) are
clear in de ® dy.
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Cross Arrays or Single Arrays?

e Three control factors A, B, C two noise factors a, b: 23 x 22 design, allowing

all main effects and two-factor interactions to be clearly estimated.

e Use a single array with 16 runs for all five factors: a resolution V 2°~!
design with I = ABCab or I = —ABCab, all main effects and two-factor
interactions are clear. (See Table 7)

e Single arrays can have smaller runs, but cross arrays are easier to use and
interpret.




32-run Cross Array and 16-run Single Arrays

Table 7: 32-Run Cross Array

a + + - —
b ¥ — + —

Runs A B C
1-4 + + + ° o o °
5-8 + + — o ° . o
9-12 + — + o ] o °
13-16 + — - . o o °
17-20 — + + o ° o o
21-24 — o - o o o o
25-28 - — + ° o o °
29-32 — — - o ° o o

v Reading: textbook, 11.6, 11.7

o . 1 =ABCab,o:1=—ABCab,
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Comparison of Cross Arrays and Single Arrays

e Example 1 (continued) An alternative is to choose a single array 2?‘7 2 design
with I = ABCa = ABbc = abcC. This is not advisable because no 2fi’s are
clear and only main effects are clear. (Why? We need to have some clear
control-by-noise interactions for robust optimization.) A better one is to use

a 2?1; 2 design with I = ABCa = abc = ABCbe. It has 9 clear effects:

A,B,C,Ab,Ac,Bb,Bc,Cb,Cc (3 control main effects and 6 control-by-noise

interactions).

Vv Reading: textbook, 11.8
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Signal-to-Noise Ratio

Taguchi’s SN ratio | = In f—;

e Two-step procedure:

e Limitations

1. Select control factor levels to maximize SN ratio,

2. Use an adjustment factor to move mean on target.

— maximizing 7> not always desired.

— little justification outside linear circuitry.

— statistically justifiable only when Var(y) is proportional to E (y)?

Recommendation: Use SN ratio sparingly. Better to use the
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location-dispersion modeling or the response modeling. The latter strategies

can do whatever SN ratio analysis can achieve.

absolule alfecls

Half-normal Plot for S/N Ratio Analysis

9 4

0.5

0B

04

0.2

" AE'

0.0

0.5 1.0 15 2.0 25

half-normal guantiles

p. 2-32

Figure 8: Half-Normal Plots of Effects Based on SN Ratio, Layer Growth Exper-

iment
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S/N Ratio Analysis for Layer Growth Experiment

e Based on the fj; column in Table 5, compute the factorial effects using SN
ratio. From Figure 7, the conclusion is similar to location-dispersion
analysis. Why? Using

f; = Iny;> — Ins?,

and from Table 5, the variation among In si2 is much larger than the variation
among Iny;?; thus maximizing SN ratio is equivalent to minimizing In sl-2 n

this case.

Vv Reading: textbook, 11.9




