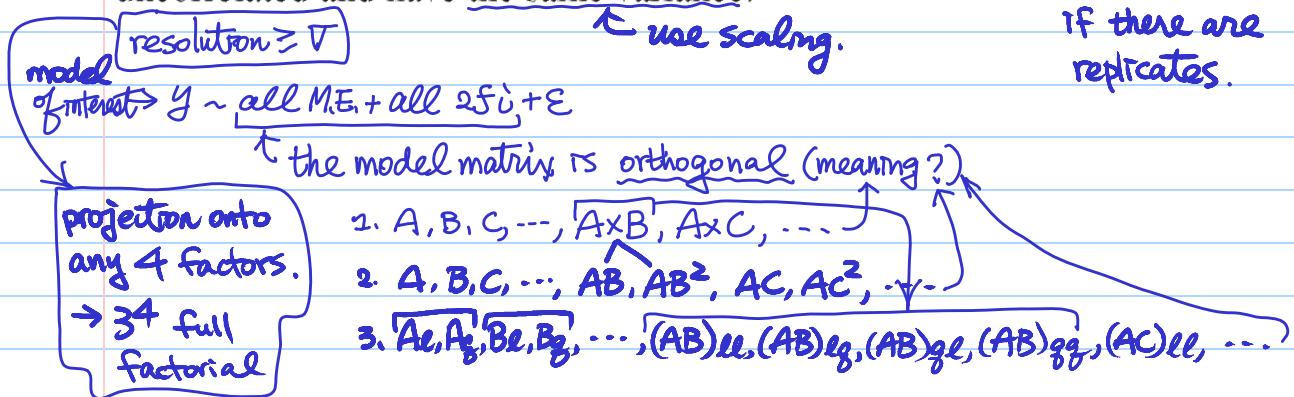


Analysis of designs with resolution at least V

- For designs of at least resolution V, all the main effects and two-factor interactions are clear. Then, further decomposition of these effects according to the linear-quadratic system allows all the effects (each with one degree of freedom) to be compared in a half-normal plot. *if no replicates*
- Note that for effects to be compared in a half-normal plot, they should be uncorrelated and have the same variance. *c.f. = half-normal plot for orthogonal components* *can do t-test if there are replicates*



Analysis of designs with resolution smaller than V

- For designs with resolution III or IV, a more elaborate analysis method is required to extract the maximum amount of information from the data.
- Consider the 3^{3-1} design with $C = AB$ whose design matrix is given in Table 6.

effects (1-dim) have correlation $\in [-1, 1]$

\rightarrow collinearity in LM.

c.f.

Recall: regular design under orthogonal components

effects (each 2-dim in 3 levels case):

either orthogonal or fully aliased.

correlation $\in \{-1, 1, 0\}$

Table 6: Design Matrix for the 3^{3-1} Design

Run	A	B	C
1	0	0	0
2	0	1	1
3	0	2	2
4	1	0	1
5	1	1	2
6	1	2	0
7	2	0	2
8	2	1	0
9	2	2	1

	AB	AB ²	AC	AC ²	BC	BC ²	CC	effect 1	effect 2
0	Ae	Ae ²	Be	Be ²	Ce	Ce ²	(AB)ll	(AB)lg	(AB)gl
1	Ag	Ag ²	Bg	Bg ²	Cg	Cg ²	(AB)ll	(AB)lg	(AB)gl
2	Ag	Ag ²	Bg	Bg ²	Cg	Cg ²	(AB)ll	(AB)lg	(AB)gl
3	Ag	Ag ²	Bg	Bg ²	Cg	Cg ²	(AB)ll	(AB)lg	(AB)gl

- Its main effects and two-factor interactions have the aliasing relations:

$$I = ABC^2$$

$$A = BC^2, B = AC^2, C = AB, AB^2 = BC = AC.$$

Analysis of designs with resolution III (contd)

- In addition to estimating the six degrees of freedom in the main effects A , B and C , there are two degrees of freedom left for estimating the three aliased effects AB^2 , BC and AC , which, as discussed before, are difficult to interpret.
- Instead, consider using the remaining two degrees of freedom to estimate any pair of the $l \times l$, $l \times q$, $q \times l$ or $q \times q$ effects between A , B and C .
- Suppose that the two interaction effects taken are $(AB)_{ll}$ and $(AB)_{lq}$. Then the eight degrees of freedom can be represented by the model matrix given in Table 7.

df.

$$\begin{array}{l}
 2 \quad A=BC^2 \\
 2 \quad B=AC^2 \\
 2 \quad C=AB \\
 2 \quad AB=BC=AC
 \end{array}$$

Table 7: A System of Contrasts for the 3^{3-1} Design

	Run	A_l	A_q	B_l	B_q	C_l	C_q	$(AB)_{ll}$	$(AB)_{lq}$
1	1	-1	1	-1	1	-1	1	1	-1
2	2	-1	1	0	-2	0	-2	not orthogonal	0
3	3	-1	1	1	1	1	1	-1	-1
4	4	0	-2	-1	1	0	-2	any more	0
5	5	0	-2	0	-2	1	1	0	0
6	6	0	-2	1	1	-1	1	0	0
7	7	1	1	-1	1	1	1	-1	1
8		1	0	-2	-1	1	0	-2	
	9	1	1	1	0	-2	1	1	1

Analysis of designs with resolution III (contd)

partial aliasing

- Because any component of $A \times B$ is orthogonal to A and to B , there are only four non-orthogonal pairs of columns whose correlations are:

complex aliasing Suppose $y = \text{all } M_E + \text{all } 2f_i + \varepsilon$.

$$\begin{array}{l}
 A_l, A_q, B_l, B_q, C_l, C_q, \\
 (AB)_{ll}, (AB)_{lq}, \dots \\
 (Ac)_{ll}, (Ac)_{lq}, \dots \\
 (Bc)_{ll}, (Bc)_{lq}, \dots
 \end{array}$$

$$\# \text{ of effects} = 1 + 6 + 12 = 19 \Rightarrow \# \text{ of d.f.} = 9 \Rightarrow n = 9$$

$$\Rightarrow P > n$$

maximum estimable model (use all d.f.)

- Obviously, $(AB)_{ll}$ and $(AB)_{lq}$ can be estimated in addition to the three main effects.

$$\text{① } A_l - C_q, (AB)_{ll}, (AB)_{lq}$$

$$\text{② } A_l - C_q, (Ac)_{ll}, (Ac)_{lq}$$

$$\text{③ } A_l - B_q, (Bc)_{ll}, (Bc)_{lq}$$

- Because the last four columns are not mutually orthogonal, they cannot be estimated with full efficiency.

why?

$$\text{c.f. } (AB^2)_{ll}, (AB^2)_{lq}$$

Q: can we also decompose the orthogonal component (2-dim) into
Analysis Strategy for Qualitative Factors meaningful 1-dim effect for ?

Ans: dummy variables.

- For a qualitative factor like factor D (lot number) in the seat-belt experiment, the linear contrast $(-1, 0, +1)$ may make sense because it represents the comparison between levels 0 and 2. Helmert coding.
- On the other hand, the quadratic contrast $(+1, -2, +1)$, which compares level 1 with the average of levels 0 and 2, makes sense only if such a comparison is of practical interest. For example, if levels 0 and 2 represent two internal suppliers, then the “quadratic” contrast measures the difference between internal and external suppliers.

average of all m_i with $D=0$

D \rightarrow $m_0 \leftarrow 0 \quad -1 \quad 1$ $m_1 \leftarrow 1 \quad 0 \quad -2$ $m_2 \leftarrow 2 \quad 1 \quad 1$

$\begin{bmatrix} m_0 \\ m_1 \\ m_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & -2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} \Rightarrow \beta = \begin{bmatrix} \beta_0 = y_3 & y_3 & y_3 \\ \beta_1 = -y_2 & 0 & y_2 \\ \beta_2 = y_6 & -y_6 & y_6 \end{bmatrix} \begin{bmatrix} m_0 \\ m_1 \\ m_2 \end{bmatrix}$

$\beta_2 = \frac{1}{2} (m_2 + m_0 - 2m_1)$

$\begin{array}{|c|c|c|c|c|} \hline 0 & -1 & 1 & 1 & \\ \hline 1 & 1 & -1 & 1 & \\ \hline 2 & 0 & -2 & 1 & \dots \\ \hline \vdots & \vdots & \vdots & \vdots & \\ \hline R & 0 & 1 & 0 & -1 \\ \hline \end{array}$

Analysis Strategy for Qualitative Factors (contd)

- When the quadratic contrast makes no sense, two out of the following three contrasts can be chosen to represent the two degrees of freedom for the main effect of a qualitative factor:

Sum coding

$$\begin{bmatrix} m_0 \\ m_1 \\ m_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} \quad D_{01} = \begin{cases} -1 & 0 \\ 1 & \text{for level 1 of factor } D, \\ 0 & 2 \end{cases}$$

D	D_{01}	D_{02}
0	-1	-1
1	1	0
2	0	1

$$\Rightarrow \beta = \begin{bmatrix} \beta_0 = y_3 & y_3 & y_3 \\ \beta_1 = -y_3 & y_3 & y_3 \\ \beta_2 = y_6 & -y_6 & y_6 \end{bmatrix} \begin{bmatrix} m_0 \\ m_1 \\ m_2 \end{bmatrix}$$

$$\beta_0 = (m_0 + m_1 + m_2)/3 = \bar{m}$$

$$\beta_1 = -\frac{1}{3}m_0 + \frac{2}{3}m_1 - \frac{1}{3}m_2$$

$$= m_1 - \left(\frac{m_0 + m_1 + m_2}{3} \right) = m_1 - \bar{m}$$

$$\beta_2 = m_2 - \bar{m}$$

$$D_{02} - D_{01}$$

$$D_{12} = \begin{cases} 0 & 0 \\ -1 & \text{for level 1 of factor } D, \\ 1 & 2 \end{cases}$$

D	-1	-1	...	-1	0	0	1
0	-1	-1		-1			
1	1	0		0			
2	0	1		1			
\vdots	\vdots	\vdots		\vdots			
R	0	0		0			

Analysis Strategy for Qualitative Factors (contd)

- Note: can only put two out of (D_{01}, D_{02}, D_{12}) into the model.

• Mathematically, they are represented by the standardized vectors:

$$D_{01} = \frac{1}{\sqrt{2}}(-1, 1, 0), D_{02} = \frac{1}{\sqrt{2}}(-1, 0, 1), D_{12} = \frac{1}{\sqrt{2}}(0, -1, 1).$$

$$X^1 \neq X^T$$

- These contrasts are not orthogonal to each other and have pairwise correlations of $1/2$ or $-1/2$. ↳ why its interpretation different from the Helmert coding (β_2 in sum coding)

• On the other hand, each of them is readily interpretable as a comparison between two of the three levels β_1 in Helmert coding

• The two contrasts should be chosen to be of interest to the investigator. For example, if level 0 is the main supplier and levels 1 and 2 are minor suppliers, then D_{01} and D_{02} should be used.

treatment coding

$$\beta_0 = \mu_0, \beta_1 = \mu_1 - \mu_0, \beta_2 = \mu_2 - \mu_0$$

D	D_{01}	D_{02}
0	0	0
1	1	0
2	0	1

reference

reference level.

Qualitative and Quantitative Factors

- The interaction between a quantitative factor and a qualitative factor, say $A \times D$, can be decomposed into four effects $\beta_0, \beta_1, \beta_2, \beta_3$ \leftarrow 1-dim

- As in (5), we define the four interaction effects as follows:

A	D	$A_0 A_1$	$D_{01} D_{02}$	$a_0 a_1$	$b_0 b_1$	$c_0 c_1$	$d_0 d_1$
μ_{00}	0	1 1	1 1	1 1	1 0	1 1	1 1
μ_{01}	0	1 1	1 1	0 1	1 0	0 1	0 1
μ_{02}	0	1 1	0 1	0 1	0 1	0 0	0 0
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
μ_{10}	1	0 2	1 1	1 1	0 0	0 0	0 0
μ_{11}	1	0 2	0 2	0 0	0 0	0 0	0 0
μ_{12}	1	0 2	0 2	0 0	0 0	0 0	0 0
μ_{20}	2	0 0	1 1	1 1	1 1	1 1	1 1
μ_{21}	2	0 0	1 1	0 1	1 0	1 1	1 0
μ_{22}	2	0 0	1 1	0 0	1 1	0 0	1 1

$$\begin{aligned} (AD)_{i,01}(i, j) &= A_i(i) D_{01}(j), \\ (AD)_{i,02}(i, j) &= A_i(i) D_{02}(j), \\ (AD)_{q,01}(i, j) &= A_q(i) D_{01}(j), \\ (AD)_{q,02}(i, j) &= A_q(i) D_{02}(j). \end{aligned}$$

$$D=1 \leftrightarrow \text{average} \quad A=0$$

$$\mu_{01} = \frac{\mu_{00} + \mu_{10} + \mu_{20}}{3}$$

$$D=1 \leftrightarrow \text{average} \quad A=2$$

$$\mu_{21} = \frac{\mu_{00} + \mu_{10} + \mu_{20}}{3}$$

$$\begin{aligned} B &= \begin{bmatrix} \beta_0 & \beta_1 & \beta_2 & \beta_3 \end{bmatrix} \\ &= \begin{bmatrix} 1 & -1 & -1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & -2 & -2 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \\ M &\approx \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 2 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 2 & 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \end{aligned}$$

$$\begin{aligned} a &\propto \begin{bmatrix} 1 & -2 & 1 & 0 & 0 & 0 & 1 & 1 & -2 \end{bmatrix} \\ b &\propto \begin{bmatrix} 1 & 1 & -2 & 0 & 0 & 0 & 1 & 1 & -2 \end{bmatrix} \\ c &\propto \begin{bmatrix} -1 & 2 & 1 & 0 & 0 & 0 & -1 & 2 & 1 \end{bmatrix} \\ d &\propto \begin{bmatrix} -1 & -1 & 2 & 2 & 2 & 2 & -4 & -1 & -1 & 2 \end{bmatrix} \end{aligned}$$

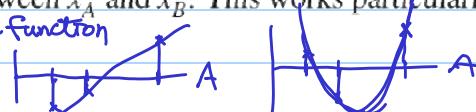
choose coding
→ decompose into
1-dim spaces

Variable Selection Strategy

want to solve $\left[\begin{smallmatrix} \text{non-orthogonality} \\ P > n \end{smallmatrix} \right]$ problem.

Since many of these contrasts are not mutually orthogonal, a general purpose analysis strategy cannot be based on the orthogonality assumption. Therefore, the following variable selection strategy is recommended.

- (i) For a quantitative factor, say A , use A_l and A_q for the A main effect.
- (ii) For a qualitative factor, say D , use D_l and D_q if D_q is interpretable; otherwise, select two contrasts from D_{01}, D_{02} , and D_{12} for the D main effect.
- (iii) For a pair of factors, say X and Y , use the products of the two contrasts of X and the two contrasts of Y (chosen in (i) or (ii)) as defined in (5) or (8) to represent the four degrees of freedom in the interaction $X \times Y$.
 model selection → identify important effects
 a difference between them later need to estimate β .
- (iv) Using the contrasts defined in (i)-(iii) for all the factors and their two-factor interactions as candidate variables, perform a stepwise regression or subset selection procedure to identify a suitable model. To avoid incompatible models, use the effect heredity principle to rule out interactions whose parent factors are both not significant.
- (v) If all the factors are quantitative, use the original scale, say x_A^i to represent the linear effect of A , x_A^2 the quadratic effect and $x_A^i x_B^j$ the interaction between x_A^i and x_B^j . This works particularly well if some factors have unevenly spaced levels.
 2nd-order polynomial
 1st-order polynomial
 base function



Analysis of Seat-Belt Experiment

- Returning to the seat-belt experiment, although the original design has resolution IV, its capacity for estimating two-factor interactions is much better than what the definition of resolution IV would suggest.
 total 27 runs.
- After estimating the four main effects, there are still 18 degrees of freedom available for estimating some components of the two-factor interactions.
- From (2), A, B, C and D are estimable and only one of the two components in each of the six interactions $A \times B, A \times C, A \times D, B \times C, B \times D$ and $C \times D$ is estimable.
 all MZ + 2fu: $1 + 4 \times 2 + 6 \times 4 = 33$
 $1 + 3 \times 2 + 3 + 3 \times 4 + 3 \times 6 = 40$
- Because of the difficulty of providing a physical interpretation of an interaction component, a simple and efficient modeling strategy that does not throw away the information in the interactions is to consider the contrasts $(A_l, A_q), (B_l, B_q), (C_l, C_q)$ and (D_{01}, D_{02}, D_{12}) for the main effects and the 30 products between these four groups of contrasts for the interactions.

Analysis of Seat-Belt Experiment (contd)

- Using these 39 contrasts as the candidate variables, the variable selection procedure was applied to the data.
- Performing a stepwise regression on the strength data (response y_1), the following model with an R^2 of 0.811 was identified:

$$\hat{y}_1 = 6223.0741 + 1116.2859A_l - 190.2437A_q + 178.6885B_l - 589.5437C_l + 294.2883(AB)_{ql} + 627.9444(AC)_{ll} - 191.2855D_{01} - 468.4190D_{12} - 486.4444(CD)_{l,12} \quad (9)$$

- Note that this model obeys effect heredity. The A , B , C and D main effects and $A \times B$, $A \times C$ and $C \times D$ interactions are significant. In contrast, the simple analysis from the previous section identified the A , C and D main effects and the $AC (= BD^2)$ and $AB (= CD^2)$ interaction components as significant.

↳ Unp. 1-26

Analysis of Seat-Belt Experiment (contd)

- Performing a stepwise regression on the flash data (response y_2), the following model with an R^2 of 0.857 was identified:

$$\hat{y}_2 = 13.6657 + 1.2408A_l + 0.1857B_l - 0.8551C_l + 0.2043C_q - 0.9406(AC)_{ll} - 0.3775(AC)_{ql} - 0.3765(BC)_{qq} - 0.2978(CD)_{l,12} \quad (10)$$

- Again, the identified model obeys effect heredity. The A , B , and C main effects and $A \times C$, $B \times C$ and $C \times D$ interactions are significant. In contrast, the simple analysis from the previous section identified the A and C main effects and the $AC (= BD^2)$, AC^2 and BC^2 interaction components as significant.

Suggestion: should try to identify more "well-fitted" submodels..

▼ Reading: textbook, 6.6