

model: $y \sim A + B + C + AB + AB^2 + AC + AC^2 + \dots + E$ p. 1-14
 for \times ANOVA : Simplified Seat-Belt Experiment

o: multi-way layout

x: orthogonal component.

Source	Degrees of Freedom	Sum of Squares	Mean Squares	F	p-value
A	2	34621746	17310873	85.58	0.000
B	2	938539	469270	2.32	0.108
C	2	9549481	4774741	23.61	0.000
$A \times B$	4	3298246	824561	4.08	0.006
AB	2	2727451	1363725	6.74	0.002
AB^2	2	570795	285397	1.41	0.253
$A \times C$	4	3872179	968045	4.79	0.002
AC	2	2985591	1492796	7.38	0.001
AC^2	2	886587	443294	2.19	0.122
$B \times C$	4	448348	112087	0.55	0.697
BC	2	427214	213607	1.06	0.355
BC^2	2	21134	10567	0.05	0.949
$A \times B \times C$	8	5206919	650865	3.22	0.005
ABC	2	4492927	2246464	11.11	0.000
ABC^2	2	263016	131508	0.65	0.526
AB^2C	2	205537	102768	0.51	0.605
AB^2C^2	2	215439	122720	0.61	0.549
residual	54	10922599	202270		
total	80	68858056			

can be further decomposed

Q:

Why \oplus hold?
 ① sequential ANOVA
 ② orthogonality

Q: why not so significant even though $SS_{AxB} > SS_{AB}$?

For a 3^k design, # of words = 3^k
 # of OC's = $3^k - 1/2$ two words form same OC.
 In 3^k , these OC's are mutually (design matrix) orthogonal.

Analysis of Simplified Seat-Belt Experiment (contd)

- The significant main effects are A and C .
- Among the interactions, $A \times B$, $A \times C$ and $A \times B \times C$ are significant.

for \times ANOVA multi-way layout o

- We have difficulty in interpretations when only one component of the interaction terms become significant. What is meant by " $A \times B$ is significant"?

Q: should we give such conclusion?

meaning? (check Wp. 1-11)

why?
 space spanned by AB, AB^2 .

- Is $A \times B$ significant because of the significance of AB alone?

– For the original Seat-Belt Experiment, we have $AB = CD^2$.

- Similarly, AC is significant, but not AC^2 . How to interpret the significance of $A \times C$?

later lecture, it's coded in a more meaningful way than orthogonal component.

- This difficulty in interpreting the significant interaction effects can be avoided by using Linear-Quadratic Systems.

✓ Reading: textbook, 6.3

Why three-level fractional factorial ?

- Run size economy : it is not economical to use a 3^4 design with 81 runs unless the experiment is not costly.
- If a 3^4 design is used for the experiment, its 81 degrees of freedom would be allocated as follows:

Main Effects	Interactions		
	2-Factor	3-Factor	4-Factor
#	8	24	16
	$((\frac{1}{2})2^4/2) \times 2$	$((\frac{1}{3})2^3/2) \times 2$	

- Using effect hierarchy principle, one would argue that 3fi's and 4fi's are not likely to be important. Out of a total of 80 df, 48 correspond to such effects !
 - higher-order interaction usually
 - ① difficult to interpret
 - ② insignificant.

Defining a 3^{4-1} Experiment

- Returning to the original seat-belt experiment, it employs a one-third fraction of the 3^4 design. This is denoted as a 3^{4-1} design.
- The design is constructed by choosing the column for factor D (lot #) to be equal to Column A + Column B + Column C (mod 3).
- This relationship can be represented by the notation

$$\begin{array}{c} A \ B \ C \\ \text{full } 3^3 \\ \boxed{\text{full } 3^3} \end{array} \quad D = \text{word of } A, B, C \quad \boxed{D = ABC}$$

$$D = ABC$$

A	B	C	D	ABCD
full			full	full
3 ⁴			3 ⁴	3 ⁴

- If x_1, \dots, x_4 are used to represent these four columns, then

$$x_4 = x_1 + x_2 + x_3 \pmod{3}, \text{ or equivalently} \\ 0 = 3x_4 = +2x_4 + 2x_4 + x_1 + x_2 + x_3 + 2x_4 = 0 \pmod{3}, \quad (1)$$

which can be represented by

identity element
"0" in "+"

$$I = ABCD^2$$

defining relation: cut a design into Y_3 , the other $\frac{2}{3} \{x_1 + x_2 + x_3 + 2x_4 = 1 \pmod{3}\}$: = 2 (1)

Aliasing Patterns of the Seat-Belt Experiment

- The aliasing patterns can be deduced from the defining relation. For example, by adding $2x_1$ to both sides of (1), we have

$$2x_1 = 3x_1 \quad \text{①} \quad x_2 + x_3 + 2x_4 = x_2 + x_3 + 2x_4 \pmod{3},$$

- This means that A and BCD^2 are aliased. (Why?)
- By following the same derivation, it is easy to show that the following effects are aliased:

orthogonal components are aliased, not interaction

independent defining relations cause 3 POC's to be aliased together.

Why?

① $\frac{1}{3}$ of runs in original design matrix

② count d.f. $27 - 1/2 = 13$
alias sets $3^4 - 1/2 = 40$
 $40 - 1/13 = 3$

① A & BCD^2 span same 2-dm space

② A & BCD^2 separate all observations into same 3 groups

$$I = ABCD^2$$

$$\begin{aligned} A &\neq A^2 B C D^2 \rightarrow A B C D \\ A^2 &\neq A B C D^2 \rightarrow B C D^2 \end{aligned}$$

$$I = ABCD^2 (= A^2 B^2 C^2 D)$$

$$A = A^2 B C D^2 = A^2 B^2 C^2 D \quad (2)$$

$$\downarrow \quad \downarrow$$

A	ABC^2	$AB^2 C^2 D$
B	ACB^2	$AB^2 C D^2$
C	$A B C^2$	$A B C^2 D^2$
D	$A B C$	$A B C D$
AB	CD^2	$A B C^2 D$
AB^2	$AC^2 D$	$BC^2 D$
AC	BD^2	$AB^2 C D$
AC^2	$AB^2 D$	$BC^2 D^2$
AD	$AB^2 C^2$	BCD
AD^2	BC	$AB^2 C^2 D^2$
BC^2	$AB^2 D^2$	$AC^2 B^2$
BD	$AB^2 C$	ACD
CD	ABC^2	ABD

Clear and Strongly Clear Effects

Note: it can be defined on AB, AB^2, \dots or $A \times B, A \times C, \dots$

- If three-factor interactions are assumed negligible, from the aliasing relations in (2), $A, B, C, D, AB^2, AC^2, AD, BC^2, BD$ and CD can be estimated.
- for orthogonal components
- These main effects or components of two-factor interactions are called **clear** because they are not aliased with any other main effects or two-factor interaction components.
- for interaction.
 - A two-factor interaction, say $A \times B$, is called **clear** if both of its components, AB and AB^2 , are clear.
 - Note that each of the six two-factor interactions has only one component that is clear; the other component is aliased with one component of another two-factor interaction. For example, for $A \times B$, AB^2 is clear but AB is aliased with CD^2 .
 - A main effect or two-factor interaction component is said to be **strongly clear** if it is not aliased with any other main effects, two-factor or three-factor interaction components. A two-factor interaction is said to be *strongly clear* if both of its components are strongly clear.

none of these 6 2.f.i. are clear

A 3^{5-2} Design

$D = AB$
 $E = AB^2C$

$\left\{ \begin{array}{l} x_1 + x_2 + x_4 + x_6 = 0 \text{ (eq1)} \\ x_1 + 2x_2 + x_3 + x_5 = 0 \text{ (eq2)} \end{array} \right.$

$eg1 \times 2 = 0$
 $eg2 \times 2 = 0$

- 5 factors, 27 runs.
- The one-ninth fraction is defined by $I = \underline{ABD^2} = \underline{AB^2CE^2}$ from which two additional relations can be obtained: **indep. defining relations**

$$I = (ABD^2)(AB^2CE^2) = A^2CD^2E^2 \rightarrow AC^2DE$$

$$0 = (eg1 + eg2) \rightarrow$$

$$0 = (eg1 + eg2) \times 2 \rightarrow$$

$$I = (ABD^2)(AB^2CE^2)^2 = B^2C^2D^2E \rightarrow BCDE^2$$

$$0 = eg1 + 2eg2 \rightarrow$$

$$0 = (eg1 + 2eg2) \times 2 \rightarrow$$

Therefore the defining contrast subgroup for this design consists of the following defining relation:

$$I \quad \begin{matrix} ABD \\ AB^2 \\ ABD^2 \end{matrix} \quad \begin{matrix} A^2BCE \\ " \\ AB^2CE^2 \end{matrix} \quad \begin{matrix} A^2CDE^2 \\ " \\ AC^2DE \end{matrix} \quad \begin{matrix} B^2C^2D^2E \\ " \\ BCDE^2 \end{matrix} \quad (3)$$

on alias set

$$3^P = 3^2 = 9 \text{ OC's in the alias set}$$

$$ABD \quad BD^2 \quad ABCE \quad ACDE^2$$

Resolution and Minimum Aberration

- Let A_i be to denote the number of words of length i in the subgroup and $W = (A_3, A_4, \dots)$ to denote the wordlength pattern.
- Based on W , the definitions of **resolution** and **minimum aberration** are the same as given before in Section 5.2.
- The subgroup defined in (3) has four words, whose lengths are 3, 4, 4, and 4. and hence $W = (1, 3, 0)$. Another 3^{5-2} design given by $D = AB, E = AB^2$ has the defining contrast subgroup,

$$I = ABD^2 - AB^2E^2 - ADE - BDE^2, \text{ (exercise)}$$

with the wordlength pattern $W = (4, 0, 0)$. According to the aberration criterion, the first design has less aberration than the second design.

- Moreover, it can be shown that the first design has minimum aberration.

General 3^{k-p} Design

- A 3^{k-p} design is a fractional factorial design with k factors in 3^{k-p} runs.

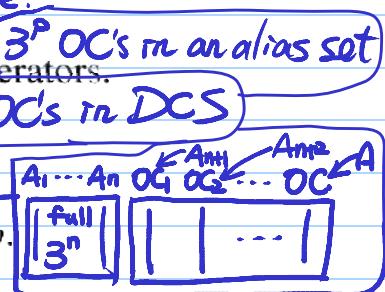
- It is a 3^{-p} th fraction of the 3^k design. $\leftarrow 3^{k-p}$: run size.

- The fractional plan is defined by p independent generators.

- How many factors can a 3^{k-p} design study?

of OCs (including M.E.):

n factors can generate $\rightarrow (3^n - 1)/2$, where $n = k - p$.



This design has 3^n runs with the independent generators x_1, x_2, \dots, x_n . We can obtain altogether $(3^n - 1)/2$ orthogonal columns as different combinations of $\sum_{i=1}^n \alpha_i x_i$ with $\alpha_i = 0, 1$ or 2 , where at least one α_i should not be zero and the first nonzero α_i should be written as "1" to avoid duplication.

- For $n=3$, the $(3^n - 1)/2 = 13$ columns were given in Table 6.5 of WH book.
- A general algebraic treatment of 3^{k-p} designs can be found in Kempthorne (1952).

✓ Reading: textbook, 6.4

Simple Analysis Methods: Plots and ANOVA

for 3^{4-1} FFD.

Initial data analysis.

- Start with making a main effects plot and interaction plots to see what effects might be important.

- This step can be followed by a formal analysis like analysis of variance and half-normal plots.

[no replicates
all diff. used by effects]

for data with
replicates (constant
variance)

The strength data will be considered first. The location main effect and interaction plots are given in Figures 1 and 2. The main effects plot suggests that factor A is the most important followed by factors C and D . The interaction plots in Figure 2 suggest that there may be interactions because the lines are not parallel.

Be aware the danger of
true: $y = x_1\beta_1 + x_2\beta_2 + \epsilon$ — (*)

fitted: $y = x_1\beta_1 + \epsilon$ — (Δ)

Note: β_1 under (x) and
(Δ) could be different
if x_1 & x_2 are not
orthogonal.

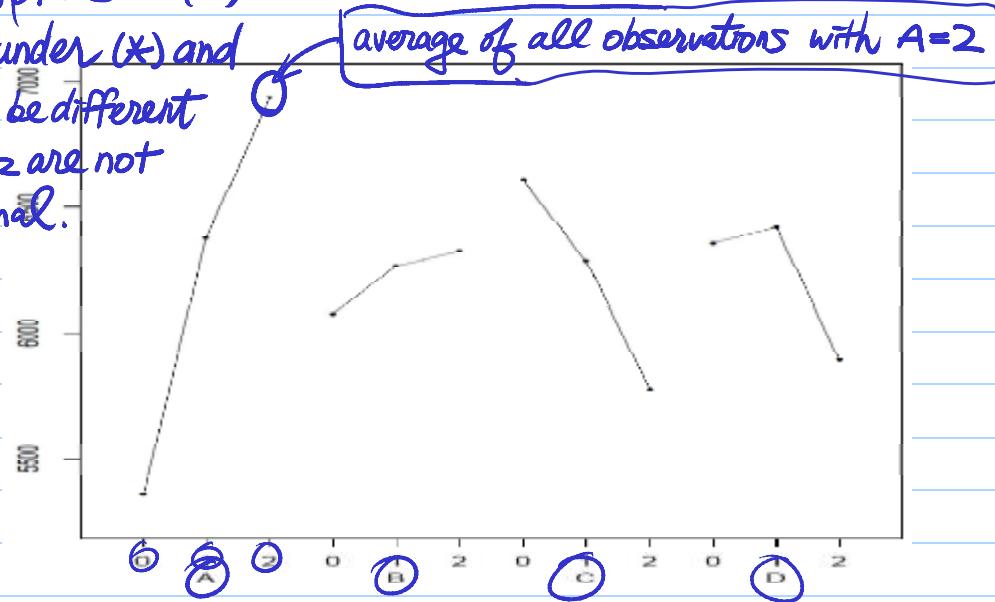
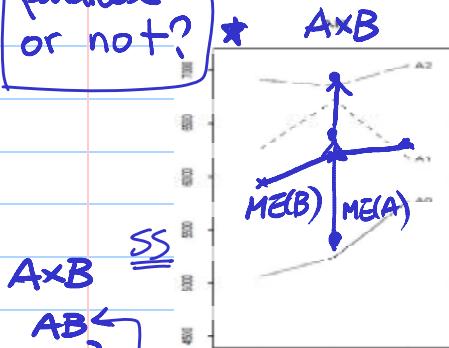


Figure 1: Main Effects Plot of Strength Location, Seat-Belt Experiment

lines are parallel
or not? \star

if no parallel, interaction (4 d.f.) could be significant. p. 1-25

Interaction Plots of Strength Location



$A \times B$ $\frac{SS}{SS}$

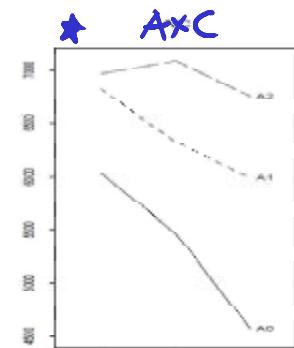
AB
 AB^2

CD

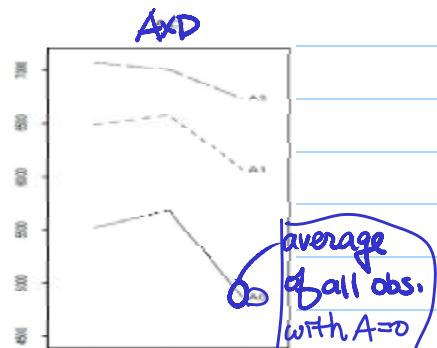
CD^2

if large

$B \times C$



$B \times D$



average
of all obs.
with $A=0$
& $D=2$

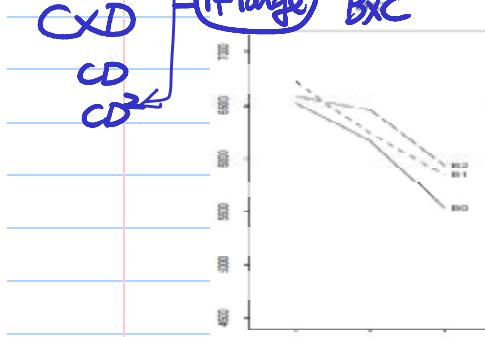
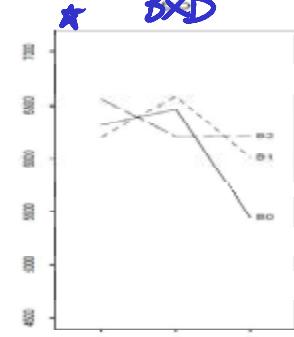
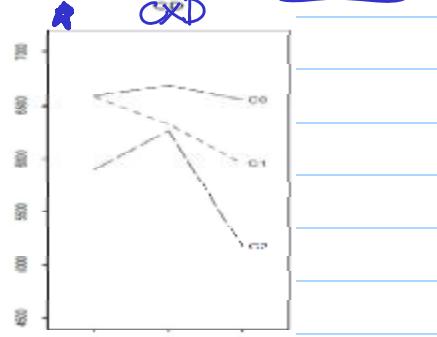


Figure 2: Interaction Plots of Strength Location, Seat-Belt Experiment