

3 levels full & fractional factorial designs ↗ Seat Belt Experiment ↗ 2 level case

- An experiment to study the effect of four factors on the pull strength of truck seat belts.
- Four factors, each at three levels (Table 1). $3^4 = 81$ all level combinations
- Two responses: crimp tensile strength that must be at least 4000 lb and flash that cannot exceed 14 mm. $\text{strength} \geq 4000, \uparrow \text{better}$ $\text{flash} \leq 14, \downarrow \text{better}$
- 27 runs were conducted; each run was replicated three times as shown in Table 2.

Table 1: Factors and Levels, Seat-Belt Experiment

Factor	Level		
	0	1	2
A. pressure (psi)	1100	1400	1700
B. die flat (mm)	10.0	10.2	10.4
C. crimp length (mm)	18	23	27
D. anchor lot (#)	P74	P75	P76

2 levels use $(-1, 1)$

equally spaced

not = :

Design Matrix and Response Data, Seat-Belt Experiment

Table 2: Design Matrix and Response Data, Seat-Belt Experiment: first 14 runs

Run	Factor				Strength	Flash		
	A	B	C	D		12.89	12.70	12.74
1	0	0	0	0	5154	6615	5959	
2	0	0	1	1	5356	6117	5224	12.83
3	0	0	2	2	3070	3773	4257	12.37
4	0	1	0	1	5547	6565	6320	13.29
5	0	1	1	2	4754	4401	5436	12.64
6	0	1	2	0	5524	4050	4526	12.75
7	0	2	0	2	5684	6251	6214	13.17
8	0	2	1	0	5735	6271	5843	13.02
9	0	2	2	1	5744	4797	5416	12.37
10	1	0	0	1	6843	6895	6957	13.28
11	1	0	1	2	6538	6323	4784	12.62
12	1	0	2	0	6152	5819	5953	13.19
13	1	1	0	2	6854	6804	6907	14.65
14	1	1	1	0	6799	6703	6792	13.00

3 replicates for each run

carry more information about $\text{Var}(y_{\bar{x}})$

response $\bar{y}_{\bar{x}}, \text{ln}(\bar{y}_{\bar{x}})$

no replicates

Design Matrix and Response Data, Seat-Belt Experiment (contd.)

Table 3: Design Matrix and Response Data, Seat-Belt Experiment: last 13 runs

Run	Factor				Strength			Flash		
	A	B	C	D						
15	1	1	2	1	6513	6503	6568	13.13	13.40	13.80
16	1	2	0	0	6473	6974	6712	13.55	14.10	14.41
17	1	2	1	1	5832	7034	5057	14.86	13.27	13.64
18	1	2	2	2	4968	5684	5261	13.00	13.58	13.45
19	2	0	0	2	7148	6920	6220	16.70	15.85	14.90
20	2	0	1	0	6905	7068	7156	14.70	13.97	13.66
21	2	0	2	1	6933	7194	6667	13.51	13.64	13.92
22	2	1	0	0	7227	7170	7015	15.54	16.16	16.14
23	2	1	1	1	7014	7040	7200	13.97	14.09	14.52
24	2	1	2	2	6215	6260	6488	14.35	13.56	13.00
25	2	2	0	1	7145	6868	6964	15.70	16.45	15.85
26	2	2	1	2	7161	7263	6937	15.21	13.77	14.34
27	2	2	2	0	7060	7050	6950	13.51	13.42	13.07

$3^{4-1} = 27$ not perform all level combinations
 Q: what's a good choice of subset of all level combinations?

✓ Reading: textbook, 6.1

Larger-The-Better and Smaller-The-Better

problems \leftarrow nominal-the-best

C.R.P. Recall: ① $\min \text{Var}(y_x)$

② adjust $E(y_x)$

- In the seat-belt experiment, the strength should be as high as possible and the flash as low as possible.
- There is no fixed nominal value for either strength or flash. Such type of problems are referred to as **larger-the-better** and **smaller-the-better** problems, respectively.
- For such problems increasing or decreasing the mean is more difficult than reducing the variation and should be done in the first step. (why?)
- Two-step procedure for larger-the-better problems:
 - Find factor settings that maximize $E(y)$.
 - Find other factor settings that minimize $\text{Var}(y)$.
- Two-step procedure for smaller-the-better problems:
 - Find factor settings that minimize $E(y)$.
 - Find other factor settings that minimize $\text{Var}(y)$.

a or few factors that can easily increase/decrease the mean $E(y_x)$ is usually difficult to find in this case

Sometimes, combined into one step.

$$y_x \geq C, E(y_x - C)^2 = \text{Var}(y_x) + (E(y_x) - C)^2$$

✓ Reading: textbook, 6.2

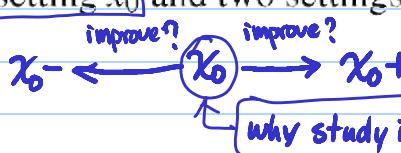
① quadratic effect

② increasing/decreasing rate not constant

Situations where three-level experiments are useful

③ increase then decrease
decrease then increase

- When there is a curvilinear relation between the response and a quantitative factor like temperature. It is not possible to detect such a curvature effect with two levels.
- A qualitative factor may have three levels (e.g., three types of machines or three suppliers). Note: VV cannot predict x.
- It is common to study the effect of a factor on the response at its current setting x_0 and two settings around x_0 .



- ① x_0 could be a very good (best) setting
- ② If x_0 - / x_0 + better than x_0 , how much better?

Analysis of 3^k designs using ANOVA factors. p. 1-6

ANONA-type → more suitable for qualitative factors.

≠ full factorial.

- We consider a simplified version of the seat-belt experiment as a 3^3 full factorial experiment with factors A, B, C → projection
- Since a 3^3 design is a special case of a multi-way layout, the analysis of variance method introduced in Section 3.5 can be applied to this experiment.
- We consider only the strength data for demonstration of the analysis.
- Using analysis of variance, we can compute the sum of squares for main effects A, B, C , interactions $A \times B, A \times C, B \times C$ and $A \times B \times C$ and the residual sum of squares. Details are given in Table 4.
- The break-up of the degrees of freedom will be as follows:
 - Each main effect has two degrees of freedom because each factor has three levels.
 - Each two-factor interaction has $(3-1) \times (3-1) = 4$ degrees of freedom.
 - The $A \times B \times C$ interaction has $(3-1) \times (3-1) \times (3-1) = 8$ degrees of freedom.
 - The residual degrees of freedom is $54 (= 27 \times (3-1))$, since there are three replicates.

$27 \times 3 = 81$ Analysis of Simplified Seat-Belt Experiment

observations

model: $y \sim A + B + C + Ax_B + Ax_C + Bx_C + Ax_Bx_C + E$

26 effects

 $81 - 27 = 54$ for residuals

$$= 27 \times (3-1)$$

fit mean

Degrees of Freedom with Orthogonality

sequential ANOVA

$$(RSS_w - RSS_{s2}) / df_w - df_{s2}$$

constant variance

Source	Degrees of Freedom	Sum of Squares	Mean Squares	$\frac{RSS_{full}}{df_{full}}$	F	p-value
$A (3-1)$	2	34621746	17310873	85.58	0.000	
B	2	938539	469270	2.32	0.108	
C	2	9549481	4774741	23.61	0.000	
$A \times B$	4	$w: g_{AB} + g_{B}$ $s: g_{AB} + g_{C}$	824561	4.08	0.006	
$A \times C$	4	$w: g_{AC} + g_{B}$ $s: g_{AC} + g_{C}$	968045	4.79	0.002	
$B \times C$	4	448348	112087	0.55	0.697	
$A \times B \times C$	8	1206919	650865	3.22	0.005	
residual	54	10922599	202270			
total	80	68858056				

pay attention to what w & s are
→ interpretation.

Orthogonal Components System: Decomposition of $A \times B$ Interaction

FYI, mod operation can work for S^k or S^{k-p} when S is a prime #. For S being prime power, $S=4, 8, 9$, use operation in Galois field.

- $A \times B$ has 4 degrees of freedom.
- $A \times B$ has two components denoted by AB and AB^2 , each having 2 df.
- Let the levels of A and B be denoted by x_1 and x_2 respectively.

- AB represents the contrasts among the response values whose x_1 and x_2 satisfy a linear equation in finite geometry $\rightarrow 1x_1 + 1x_2 = 0, 1, 2 \pmod{3}$,

$$1x_1 + 1x_2 = 0, 1, 2 \pmod{3},$$

A	B	AB	AB^2	AB^2
0	0	0	0	0
0	1	1	2	1
0	2	2	1	1
1	0	1	2	2
1	1	2	1	1
1	2	0	0	0
2	0	2	1	2
2	1	0	0	1
2	2	1	2	1

equivalent AB^2 represents the contrasts among the response values whose x_1 and x_2 satisfy a linear equation in finite geometry $\rightarrow 1x_1 + 2x_2 = 0, 1, 2 \pmod{3}$,

A	B	AB
0	0	0
0	1	1
0	2	2
1	0	1
1	1	2
1	2	0
2	0	2
2	1	0
2	2	1

$$1x_1 + 2x_2 = 0, 1, 2 \pmod{3},$$

$$2(x_1 + 2x_2) = 2x_1 + 4x_2 = 2x_1 + x_2$$

Orthogonal Components System: Decomposition of $A \times B \times C$ Interaction

- $A \times B \times C$ has 8 degrees of freedom.
- It can be further split up into four components denoted by ABC , ABC^2 , AB^2C and AB^2C^2 , each having 2 df.
- Let the levels of A , B and C be denoted by x_1 , x_2 and x_3 respectively.
- ABC , ABC^2 , AB^2C and AB^2C^2 represent the contrasts among the three groups of (x_1, x_2, x_3) satisfying each of the four systems of equations,

$$\begin{aligned} x_1 + x_2 + x_3 &= 0, 1, 2 \pmod{3}, \\ x_1 + x_2 + 2x_3 &= 0, 1, 2 \pmod{3}, \\ x_1 + 2x_2 + x_3 &= 0, 1, 2 \pmod{3}, \\ x_1 + 2x_2 + 2x_3 &= 0, 1, 2 \pmod{3}. \end{aligned}$$

Uniqueness of Representation

- To avoid ambiguity, the convention that the coefficient for the first nonzero factor is 1 will be used.
- ABC^2 is used instead of A^2B^2C , even though the two are equivalent.
- For A^2B^2C , there are three groups satisfying

they separate the data
into 3 same groups

$$\begin{aligned} 2x_1 + 2x_2 + x_3 &= 0, 1, 2 \pmod{3}, \\ \text{equivalently, } 2 \times (2x_1 + 2x_2 + x_3) &= 2 \times (0, 1, 2) \pmod{3}, \\ \text{equivalently, } x_1 + x_2 + 2x_3 &= 0, 2, 1 \pmod{3}, \end{aligned}$$

which corresponds to ABC^2 by relabeling of the groups. Hence ABC^2 and A^2B^2C are equivalent.

Representation of AB and AB^2

Table 5: Factor A and B Combinations (x_1 denotes the levels of factor A and x_2 denotes the levels of factor B)

Is of factor B) $\xrightarrow{?}$

B

		A			B			
		x_1	x_2	$x_1 + x_2 \pmod{3}$	y_{10}	y_{11}	y_{12}	y_{20}
0	0	0	0	0	$\text{R} \rightarrow y_{10}$	$\text{R} \rightarrow y_{11}$	$\text{R} \rightarrow y_{12}$	$\text{R} \rightarrow y_{20}$
1	0	1	1	1	$\text{R} \rightarrow y_{10}$	$\text{R} \rightarrow y_{11}$	$\text{R} \rightarrow y_{12}$	$\text{R} \rightarrow y_{21}$
2	0	2	2	2	$\text{R} \rightarrow y_{10}$	$\text{R} \rightarrow y_{11}$	$\text{R} \rightarrow y_{12}$	$\text{R} \rightarrow y_{22}$

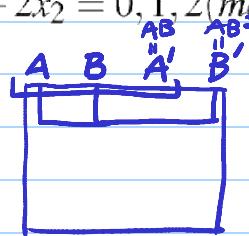
$\xrightarrow{?}$

R

B

spond to (x_1, x_2) with $x_1 + x_2 \equiv 0, 1, 2 \pmod{3}$ resp.

- i, j, k correspond to (x_1, x_2) with $x_1 + 2x_2 = 0, 1, 2 \pmod{3}$ resp.



Connection with Graeco-Latin Square

- In Table 5, α, β, γ forms a Latin Square and i, j, k forms another Latin Square.
- (α, β, γ) and (i, j, k) jointly form a Graeco-Latin Square. This implies that SS for (α, β, γ) and SS for (i, j, k) are **orthogonal**. *← design matrix orthogonal.*
- $SS_{AB} = 3n[(\bar{y}_\alpha - \bar{y}_.)^2 + (\bar{y}_\beta - \bar{y}_.)^2 + (\bar{y}_\gamma - \bar{y}_.)^2]$,
where $\bar{y}_. = (\bar{y}_\alpha + \bar{y}_\beta + \bar{y}_\gamma)/3$ and n is the number of replicates,
 $\bar{y}_\alpha = \frac{1}{3}(y_{00} + y_{12} + y_{21})$, etc. *how many observations in Y_{00} .*
- Similarly, $SS_{AB^2} = 3n[(\bar{y}_i - \bar{y}_.)^2 + (\bar{y}_j - \bar{y}_.)^2 + (\bar{y}_k - \bar{y}_.)^2]$.

Its model matrix columns span a 2-dim space

$$\begin{bmatrix} AB \\ 0 \\ 1 \\ 2 \end{bmatrix} \begin{pmatrix} y, \dots, y \\ y, \dots, y \\ y, \dots, y \end{pmatrix} \alpha \beta \gamma$$

treat the column (LN_p. 1-8) of AB as a 3-level factor, SS_{AB} is the variation of \bar{y} that can be explained by the factor. 2 $\bar{y}, \bar{y} - y$

Analysis using the Orthogonal components system

- For the simplified seat-belt experiment, $\bar{y}_\alpha = 6024.407$, $\bar{y}_\beta = 6177.815$ and $\bar{y}_\gamma = 6467.0$, so that $\bar{y}_\cdot = 6223.074$ and

$$SS_{AB} = (3)(9)[(6024.407 - 6223.074)^2 + (6177.815 - 6223.074)^2 + (6467.0 - 6223.074)^2] = \underline{\underline{2727451.}}$$

- Similarly, $SS_{AB^2} = \underline{\underline{570795.}}$

- See ANOVA table on the next page.

Why? \because orthogonality.

Note: $\underline{\underline{SS_{AB}}} + \underline{\underline{SS_{AB^2}}} \neq 3298246 = \underline{\underline{SS_{AxB}}}$

Note: notation: $x \rightarrow$ interaction

without $x \rightarrow$ orthogonal component.

Note: all orthogonal components are defined on full factorial design.