Seat Belt Experiment

e An experiment to study the effect of four factors on the pull strength of
truck seat belts.

e Four factors, each at three levels (Table 1).

e Two responses : crimp tensile strength that must be at least 4000 Ib and flash
that cannot exceed 14 mm.

e 27 runs were conducted; each run was replicated three times as shown in
Table 2.

Table 1: Factors and Levels, Seat-Belt Experiment

Level
Factor 0 1 2
A.  pressure (psi) 1100 1400 1700
B.  die flat (mm) 10.0 10.2 104
C.  crimp length (mm) | 18 23 27
D. anchor lot (#) P74 P75 P76

Design Matrix and Response Data, Seat-Belt

Experiment

Table 2: Design Matrix and Response Data, Seat-Belt Experiment: first 14 runs

Factor
Run A B C D Strength Flash
1 0 0 0 0 5164 6615 5959 12.89 12.70 12.74
2 0 0 1 | 5356 6117 5224 12.83 12.73 13.07
3 0 0 2 2 3070 3773 4257 12.37 12.47 12.44
4 0 1 0 | 5547 6566 6320 13.29 12.86 12.70
5 0 1 1 2 4754 4401 5436 12.64 12.50 12.61
6 0 1 2 0 5524 4050 4526 12.76 12.72 12.94
7 0 2 0 2 5684 6251 6214 13.17 13.33 13.98
8 0 2 1 0 5735 6271 5843 13.02 13.11 12.67
9 0 2 2 I 5744 4797 5416 12.37 12.67 12.54
10 1 0 0 1 6843 6895 6957 13.28 13.65 13.58
11 1 0 1 2 6538 6328 4784 12.62 14.07 13.38
12 1 0 2 0 6152 5819 5963 13.19 12.94 13.15
13 1 1 0 2 6854 6804 6907 14.65 14.98 14.40
14 1 1 1 0 6799 6703 6792 13.00 13.35 12.87




Design Matrix and Response Data, Seat-Belt

Experiment (contd.)
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Table 3: Design Matrix and Response Data, Seat-Belt Experiment: last 13 runs

Factor

25
26
27

7145 6868 6964 15.70 16.45 15.85
7161 7263 6937 15.21 13.77 14.34
7060 7050 6950 13.51 13.42 13.07

Run A B C D Strength Flash

15 1 1 2 1 6513 6503 6568 13.13 13.40 13.80
16 1 2 0 0 6473 6974 6712 13.55 14.10 1441
17 1 2 1 1 6832 7034 5057 14.86 13.27 13.64
18 1 2 2 2 4968 5684 5761 13.00 13.58 1345
19 2 0 0 2 7148 6920 6220 16.70 15.85 14.90
20 2 0 1 0 6905 7068 7156 14.70 13.97 13.66
21 2 0 2 1 6933 7194 6667 13.51 13.64 13.92
22 2 1 0 0 7227 7170 7015 15.54 16.16 16.14
23 2 1 1 1 7014 7040 7200 13.97 14.09 14.52
24 2 1 2 2 6215 6260 6488 14.35 13.56 13.00

2 2 0 1

2 2 1 2

2 2 2 0

v/ Reading: textbook, 6.1

Larger-The-Better and Smaller-The-Better

problems

o In the seat-belt experiment, the strength should be as high as possible and the flash
low as possible.

e There is no fixed nominal value for either strength or flash. Such type of problems
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as

are referred to as larger-the-better and smaller-the-better problems, respectively.

e For such problems increasing or decreasing the mean is more difficult than reducing

the variation and should be done in the first step. (why?)

e Two-step procedure for larger-the-better problems:
1. Find factor settings that maximize E(y).

2. Find other factor settings that minimize Var(y).

e Two-step procedure for smaller-the-better problems:
1. Find factor settings that minimize E(y).
2. Find other factor settings that minimize Var(y).
v/ Reading: textbook, 6.2




Situations where three-level experiments are useful

e When there is a curvilinear relation between the response and a quantitative
factor like temperature. It is not possible to detect such a curvature effect
with two levels.

e A qualitative factor may have three levels (e.g., three types of machines or
three suppliers).

e [t is common to study the effect of a factor on the response at its current
setting xg and two settings around xj.

Analysis of 3% designs using ANOVA

e We consider a simplified version of the seat-belt experiment as a 3° full
factorial experiment with factors A, B, C.

e Since a 37 design is a special case of a multi-way layout, the analysis of
variance method introduced in Section 3.5 can be applied to this experiment.

e We consider only the strength data for demonstration of the analysis.

e Using analysis of variance, we can compute the sum of squares for main
effects A, B, C, interactions A Xx B, A x C, Bx C and A x B x C and the
residual sum of squares. Details are given in Table 4.

e The break-up of the degrees of freedom will be as follows:
— Each main effect has two degrees of freedom because each factor has three levels.
— Each two-factor interaction has (3 — 1) x (3 — 1) = 4 degrees of freedom.
— The A x B x C interaction has (3 —1) x (3—1) x {3 —1) = 8 degrees of freedom.

— The residual degrees of freedom is 54(=27 x (3 — 1)), since there are three replicates.




Analysis of Simplified Seat-Belt Experiment

Table 4: ANOVA Table, Simplified Seat-Belt Experiment

Degrees of Sum of Mean
Source Freedom Squares Squares F p-value
A 2 34621746 17310873 85.58 0.000
B 2 938539 469270 2.32 0.108
C 2 9549481 4774741 23.61 0.000
AXB 4 3298246 824561 4.08 0.006
AxC 4 3872179 968045 4.79 0.002
BxC 4 448348 112087 0.55 0.697
AxXBxC 8 5206919 650865 3.22 0.005
residual 54 10922599 202270
total 80 68858056
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Orthogonal Components System: Decomposition of
A X B Interaction

e A X B has 4 degrees of freedom.
e A x B has two components denoted by AB and AB?, each having 2 df.
e Let the levels of A and B be denoted by x; and x, respectively.

e AB represents the contrasts among the response values whose x| and x;
satisfy

x1+x2=0,1,2(mod 3),

e AB? represents the contrasts among the response values whose x| and x>
satisfy

x1+2x =0,1,2(mod 3).
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Orthogonal Components System: Decomposition of
A X B x C Interaction

A X B x C has 8 degrees of freedom.

It can be further split up into four components denoted by ABC, ABC?,
AB?C and AB*C?, each having 2 df.

Let the levels of A, B and C be denoted by x1, x» and x3 respectively.

ABC, ABC?, AB*C and AB*C? represent the contrasts among the three
groups of (x1,x7,x3) satisfying each of the four systems of equations,

x1+x4+x3 = 0,1,2(mod3),
X1+x+2x = 0,1,2(mod3),
x14+2x+x3 = 0,1,2(mod3),
x1+2x+2x3 = 0,1,2(mod3).

p. 1-10

Uniqueness of Representation
e To avoid ambiguity, the convention that the coefficient for the first nonzero
factor is 1 will be used.
e ABC? is used instead of A2B*C, even though the two are equivalent.

e For A2B2(C, there are three groups satisfying

2x1+2x0+x3 = 0,1,2(mod3),
equivalently,  2x(2x;+2x+x3) = 2x(0,1,2)(mod3),
equivalently, x1+x+2x3 = 0,2,1{mod3),

which corresponds to ABC? by relabeling of the groups. Hence ABC? and
A2B2C are equivalent.




Representation of AB and AB>

p. 1-11

Table 5: Factor A and B Combinations (x; denotes the levels of factor A and x;

denotes the levels of factor B)

e o, [,y correspond to (x1,xz) with x; +x, = 0,1,2(mod3) resp.

e i,j.kcorrespond to (x1,xp) with x; +2x; =0, 1,2(mod3) resp.

X1 0 xlz 2
0 | ai(yoo) | Bk(or) | v/ (vo2)
L Bjio) | Yily) | ok(y12)
2 | Yk (y20) | oj(y21) | Bi(y2)

Connection with Graeco-Latin Square

In Table 5, (o, B,7y) forms a Latin Square and (i, j, k) forms another Latin

Square.
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(o, B,Y) and (i, j, k) jointly form a Graeco-Latin Square. This implies that
SS for (o, B,7) and SS for (i, j, k) are orthogonal.

SSap = 3n[(Fa—3.)" + (G —5.)° + Gy —3.)7],

where y. = (Vo + yg + ¥y)/3 and n is the number of replicates,

Yo = %(YOO + yi2 +y21), etc.

Similarly, S,z = 3n[(5i —5.)* + (5; — 5.)> + G — 7.)7).




p. 1-13

Analysis using the Orthogonal components system

e For the simplified seat-belt experiment, v, = 6024.407, yp= 6177.815 and

yy = 6467.0, so that y. = 6223.074 and

SSaB

e Similarly, SS,z = 570795.

e See ANOVA table on the next page.

= (3)(9)[(6024.407 — 6223.074)% + (6177.815 — 6223.074)?
+(6467.0 — 6223.074)?] = 2727451.

ANOVA : Simplified Seat-Belt Experiment

Degrees of Sum of Mean

Source Freedom Squares Squares F p-value
A 2 34621746 17310873 85.58 0.000
B 2 938539 469270 2.32 0.108
C 2 9549481 4774741 23.61 0.000
AxB 4 3298246 824561 4.08 0.006
AB 2 2727451 1363725 6.74 0.002
AB2 2 570795 285397 1.41 0.253
AxC 4 3872179 968045 4.79 0.002
AC 2 2985591 1492796 7.38 0.001
AC? 2 886587 443294 2.19 0.122
BxC 4 448348 112087 0.55 0.697
BC 2 427214 213607 1.06 0.355
BC2 2 21134 10567 0.05 0.949
AxBxC 8 5206919 650865 3.22 0.005
ABC 2 4492927 2246464 1111 0.000
ABC? 2 263016 131508 0.65 0.526
AB%c 2 205537 102768 0.51 0.605
AB2C? 2 245439 122720 0.61 0.549

residual 54 10922599 202270
total 80 68858056
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Analysis of Simplified Seat-Belt Experiment (contd)

e The significant main effects are A and C.
e Among the interactions, A X B, A X C and A x B x C are significant.

e We have difficulty in interpretations when only one component of the
interaction terms become significant. What is meant by “A x B is
significant”?

— Here AB is significant but AB? is not.

— Is A x B significant because of the significance of AB alone ?

— For the original Seat-Belt Experiment, we have AB = CD?.

e Similarly, AC is significant, but not AC2. How to interpret the significance of
AxC?

e This difficulty in interpreting the significant interaction effects can be
avoided by using Linear-Quadratic Systems.

v/ Reading: textbook, 6.3
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Why three-level fractional factorial ?
o Run size economy : it is not economical to use a 3* design with 81 runs
unless the experiment is not costly.

o If a 3* design is used for the experiment, its 81 degrees of freedom would be
allocated as follows:

Main Interactions
Effects 2-Factor 3-Factor 4-Factor
# 8 24 32 16

e Using effect hierarchy principle, one would argue that 3fi’s and 41i’s are not
likely to be important. Out of a total of 80 df, 48 correspond to such effects !




Defining a 3*~! Experiment

Returning to the original seat-belt experiment, it employs a one-third
fraction of the 3* design. This is denoted as a 3*~! design.
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The design 1s constructed by choosing the column for factor D (lot #) to be

equal to Column A + Column B + Column C(mod 3).

This relationship can be represented by the notation

D =ABC.

If x1,...,x4 are used to represent these four columns, then

x4 = x1 +x2 +x3(mod 3),or equivalently

x1 4 x2 +x3 4+ 2x4 = 0(mod 3),
which can be represented by

I = ABCD?.

(D

Aliasing Patterns of the Seat-Belt Experiment

The aliasing patterns can be deduced from the defining relation. For
example, by adding 2x; to both sides of (1), we have

2x1 = 3x1 +x2 +x3 + 2x4 = x3 +x3 + 2x4(mod 3),

This means that A and BCD? are aliased. (Why?)

By following the same derivation, it is easy to show that the following
effects are aliased:

A =  BCD? = 4B%¢%p,
B = AcD? = ABXcD?,
c = ABD? = ABCZD?,
D =  ABC =  ABCD,
AB = c¢pt =  ABCID,
ABZ = ac?p =  BCID,
AC = BD? = AB%CD,
AC? = AB?D = Bcip?,
AD =  AB*c? = Bep,
AD? =  BC = ABXC2p?,
BC?Z = ABD? = aAc?D?,
BD = AB’c = ACD,

ABC2 ABD.
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2
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Clear and Strongly Clear Effects

If three-factor interactions are assumed negligible, from the aliasing relations in (2),
A, B,C, D, AB%, AC?, AD, BC?, BD and CD can be estimated.

These main effects or components of two-factor interactions are called clear because
they are not aliased with any other main effects or two-factor interaction

components.

A two-factor interaction, say A X B, is called clear if both of its components, AB and

AB?2, are clear.

Note that each of the six two-factor interactions has only one component that is
clear; the other component is aliased with one component of another two-factor
interaction. For example, for A x B, AB? is clear but AB is aliased with CD?.

A main effect or two-factor interaction component is said to be strongly clear if it is
not aliased with any other main effects, two-factor or three-factor interaction
components. A two-factor interaction is said to be strongly clear if both of its
components are strongly clear.
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A 3°72 Design

5 factors, 27 runs.

The one-ninth fraction 1s defined by I = ABD? = AB>CE?Z, from which two
additional relations can be obtained:

I = (ABD?)(AB*CE?) = A°CD*E* = AC*DE
and
I = (ABD*)(AB°CE?*)* = B*C*D*E = BCDE".

Therefore the defining contrast subgroup for this design consists of the
following defining relation:

I = ABD? = AB*CE? = AC*DE = BCDE?. (3)
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Resolution and Minimum Aberration
e Let A; be to denote the number of words of length i in the subgroup and
W = (A3,Ay4,...) to denote the wordlength pattern.

e Based on W, the definitions of resolution and minimum aberration are the
same as given before in Section 5.2.

e The subgroup defined in (3) has four words, whose lengths are 3, 4, 4, and 4.
and hence W = (1,3,0). Another 3°~2 design given by D = AB,E = AB?
has the defining contrast subgroup,

I = ABD? = AB*E? = ADE = BDE?,

with the wordlength pattern W = (4,0,0). According to the aberration
criterion, the first design has less aberration than the second design.

e Moreover, it can be shown that the first design has minimum aberration.
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General 3~ ” Design

o A 377 design is a fractional factorial design with k factors in 3*~7 runs.
e It is a 3 Pth fraction of the 3* design.
e The fractional plan is defined by p independent generators.

e How many factors can a 3*=7 design study?
(3" —1)/2, where n =k — p.

This design has 3" runs with the independent generators x1, x3, ..., X,. We
can obtain altogether (3" — 1) /2 orthogonal columns as different
combinations of Y7 ; ox; with o; = 0, 1 or 2, where at least one o; should
not be zero and the first nonzero o; should be written as “1”’ to avoid
duplication.

e For n=3, the (3" — 1)/2 = 13 columns were given in Table 6.5 of WH book.

e A general algebraic treatment of 3*~? designs can be found in Kempthorne

(1952).
v/ Reading: textbook, 6.4
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Simple Analysis Methods: Plots and ANOVA

e Start with making a main effects plot and interaction plots to see what
effects might be important.

e This step can be followed by a formal analysis like analysis of variance and
half-normal plots.

The strength data will be considered first. The location main effect and
interaction plots are given in Figures 1 and 2. The main effects plot suggests that
factor A is the most important followed by factors C and D. The interaction plots
in Figure 2 suggest that there may be interactions because the lines are not
parallel.
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Main Effects Plot of Strength Location
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Figure 1: Main Effects Plot of Strength Location, Seat-Belt Experiment
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Figure 2: Interaction Plots of Strength Location, Seat-Belt Experiment

Interaction Plots of Strength Location
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ANOVA Table for Strength Location

Degrees of Sum of Mean

Source Freedom Squares Squares F p-value
A 2 34621746 17310873  85.58 0.000
B 2 938539 469270 232 0.108
AB =CD? 2 2727451 1363725 6.74 0.002
AB? 2 570795 285397 1.41 0.253
C 2 9549481 4774741 23.61 0.000
AC = BD? 2 2985591 1492796 7.38 0.001
AC? 2 886587 443294 2.19 0.122
BC =AD? 2 427214 213607 1.06 0.355
BC? 2 21134 10567  0.05 0.949
D 2 4492927 2246464  11.11 0.000
AD 2 263016 131508 0.65 0.526
BD 2 205537 102768 0.51 0.605
CcD 2 245439 122720 0.61 0.549
residual 54 10922599 202270
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Analysis of Strength Location, Seat-Belt Experiment

e In cquation (2), the 26 degrees of freedom in the experiment were grouped
into 13 sets of effects. The corresponding ANOVA table gives the SS values
for these 13 effects.

o Based on the p values in the ANOVA Table, clearly the factor A, C and D
main effects are significant.

e Also two aliased sets of effects are significant, AB = CD? and AC = BD’.

o These findings are consistent with those based on the main effects plot and
intcraction plots. In particular, the significance of AB and CD? is supported

by the A x B and C x D plots and the significance of AC and BD? by the
A x Cand B x D plots.
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Analysis of Strength Dispersion (i.e., Ins?) Data

The corresponding strength main effects plot and interaction plots are displayed
in Figures 3 and 4.

Figure 3: Main Effects Plot of Strength Dispersion, Seat-Belt Experiment
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Interaction Plots of Strength Dispersion

Figure 4: Interaction Plots of Strength Dispersion, Seat-Belt Experiment

Half-Normal Plots

Since there 1s no replication for the dispersion analysis, ANOVA cannot be

used to test effect significance.

Instead, a half-normal plot can be drawn as follows. The 26 df’s can be
divided into 13 groups, each having two df’s. These 13 groups correspond
to the 13 rows in the ANOVA table of page 26.

The two degrees of freedom 1n each group can be decomposed further into a
lincar cffect and a quadratic cffcet with the contrast vectors —% (—1,0,1)
v 2

and i@( 1,—2,1), respectively, where the values in the vectors arc associated
V
with the Ins? values at the levels (0, 1, 2) for the group.

Because the linear and quadratic effects are standardized and orthogonal to
each other, these 26 effect estimates can be plotted on the half-normal

probability scalec as in Figure 5.
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Half-Normal Plot
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Figure 5: Half-Normal Plot of Strength Dispersion Effects, Seat-Belt Experiment

Informal analysis of the plot suggests that the factor A linear effect may be

significant. This can be confirmed by using Lenth’s method. The tpsg value for
the A linear effect is 3.99, which has a p value of 0.003(IER) and 0.050 (EER).
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Analysis Summary

e A similar analysis can be performed to identify the flash location and
dispersion effects. See Section 6.5 of WH book.

e We can determine the optimal factor settings that maximize the strength
location by examining the main effects plot and interaction plots in
Figures 1 and 2 that correspond to the significant effects identified in the
ANOVA table.

e We can similarly determine the optimal factor settings that minimize the
strength dispersion, the flash location and flash dispersion, respectively.

e The most obvious findings: level 2 of factor A be chosen to maximize
strength while level O of factor A be chosen to minimize flash.

e There is an obvious conflict in meeting the two objectives. Trade-off
strategies for handling multiple characteristics and conflicting objectives
need to be considered (See Section 6.7 of WH).

v/ Reading: textbook, 6.5
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An Alternative Analysis Method : Linear-Quadratic
System

In the seat-belt experiment, the factors A, B and C are quantitative. The two
degrees of freedom in a quantitative factor, say A, can be decomposed into the
linear and quadratic components.

Letting vo, y1 and y, represent the observations at level 0, 1 and 2, then the linear
effect is defined as

Y2 —Y0
and the quadratic effect as

(y2+y0) —2y1,

which can be re-expressed as the difference between two consecutive linear
effects (y2 —y1) — (v1 —yo)-
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Linear and Quadratic Effects

Mathematically, the linear and quadratic effects are represented by two mutually
orthogonal vectors:

A =
A, =

(_1707 1)7

4)
(1,-2,1).

S-Sl

e For the sake of brevity, they are also referred to as the / and g effects.
e The scaling constants v/2 and v/6 yield vectors with unit length.

e The linear (or quadratic) effect is obtained by taking the inner product
between A; (or A,) and the vector y = (yo,y1,y2). For factor B, B; and B, are
similarly defined.
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Linear and Quadratic Effects (contd)

e Then the four degrees of freedom in the A x B interaction can be
decomposed into four mutually orthogonal terms:
(AB)11,(AB)14, (AB) 41, (AB) 44, which are defined as follows: for i, j =0,1,2,

(AB)u(i,j) = Ai()Bi(j),
(AB)1,(i, ) = Ai(D)B4()): 5)
(AB)ql(iaj) - Aq(i)Bl(j)a
(AB)qq(iaj) - Aq(i)Bq(j)-

They are called the linear-by-linear, linear-by-quadratic,
quadratic-by-linear and quadratic-by-quadratic interaction effects. They
are also referred toas the [ x [, [ x g, g X [ and g X g effects.

e It is easy to show that they are orthogonal to each other.
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Linear and Quadratic Effects (contd)

Using the nine level combinations of factors A and B, yqq, ..., Y22 given in
Table 5, the contrasts (AB)y;, (AB)4, (AB) 4, (AB)4 can be expressed as follows:

(AB)ii: 3{(y22 —¥20) — (yo2 — y00) },

(AB)ig: 55 {(v22+y20 = 221) = (o2 +¥00 = 2y01)},
(AB) g 551 (v22 +y02 = 2y12) = (20 + 00 — 2y10) },

(AB)gq: +{(v22+¥20 — 2y21) — 2(y12 +¥10 — 2y11) + (o2 + Yoo — 2y01) }-

e An (AB);; interaction effect measures the difference between the conditional
linear B effects at levels O and 2 of factor A.

e A significant (AB),; interaction effect means that there is curvature in the
conditional linear B effect over the three levels of factor A.

e The other interaction effects (AB);, and (AB),, can be similarly interpreted.
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Analysis of designs with resolution at least V

e For designs of at least resolution V, all the main effects and two-factor
interactions are clear. Then, further decomposition of these effects
according to the linear-quadratic system allows all the effects (each with one
degree of freedom) to be compared in a half-normal plot.

e Note that for effects to be compared in a half-normal plot, they should be
uncorrelated and have the same variance.
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Analysis of designs with resolution smaller than V

e For designs with resolution /71 or IV, a more elaborate analysis method is
required to extract the maximum amount of information from the data.

e Consider the 3°~! design with C = AB whose design matrix is given in
Table 6.

Table 6: Design Matrix for the 3°~! Design

Run A

3]
9}

R I e N N N R I,

0
0
0
1
1
1
2
2
2

S B I =T R
- O M O N = N~ O

e Its main effects and two-factor interactions have the aliasing relations:

A=BC* B=AC?*C=AB,AB* = BC = AC. (6)
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Analysis of designs with resolution /17 (contd) :

e In addition to estimating the six degrees of freedom in the main effects A, B
and C, there are two degrees of freedom left for estimating the three aliased
effects AB2, BC and AC, which, as discussed before, are difficult to interpret.

e Instead, consider using the remaining two degrees of freedom to estimate
any pair of the [ x [,1 x g,q x [ or g x q effects between A, B and C.

e Suppose that the two interaction effects taken are (AB);; and (AB);,. Then
the eight degrees of freedom can be represented by the model matrix given
in Table 7.

Table 7: A System of Contrasts for the 33~! Design

A

Run A

=

B C AB)y  (AB)

lg

1
0
1
0
0
0
-1
0

o L b o - o L

q
1
2
1
-2
1
1
1
1
2

S T Y SN N O

q
1
1
1
2
-2
2
1
1
1

o oo o~ (@2} wn = W [\=) —_
e
—_ o m O D O = = e 8D
\ ! \
[ M TSN I Y o SN
, . .
T =T - S N QN

i
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Analysis of designs with resolution /// (contd) p

e Because any component of A X B is orthogonal to A and to B, there are only
four non-orthogonal pairs of columns whose correlations are:

Corr((AB);,C;) = —\/g,

1

9 =~

0 (7)
\/g?
Corr((AB);4,C;) = —\/g.

e Obviously, (AB);; and (AB);, can be estimated in addition to the three main
effects.

e Because the last four columns are not mutually orthogonal, they cannot be
estimated with full efficiency.

o The estimability of (AB);; and (AB);, demonstrates an advantage of the
linear-quadratic system over the orthogonal components system. For the
same design, the AB interaction component cannot be estimated because it is
aliased with the main effect C.
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Analysis Strategy for Qualitative Factors

e For a qualitative factor like factor D (lot number) in the seat-belt

experiment, the linear contrast (—1,0,+1) may make sense because it

represents the comparison between levels 0 and 2.

e On the other hand, the “quadratic” contrast (+1,—2,+1), which compares

level 1 with the average of levels 0 and 2, makes sense only if such a

comparison is of practical interest. For example, if levels O and 2 represent

two internal suppliers, then the “quadratic” contrast measures the difference

between internal and external suppliers.

Analysis Strategy for Qualitative Factors (contd) ’

42

e When the quadratic contrast makes no sense, two out of the following three

contrasts can be chosen to represent the two degrees of freedom for the main

effect of a qualitative factor:

Doy = <

Dy =«

for level

for level

for level

1

1

of factor D,

of factor D,

of factor D,
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Analysis Strategy for Qualitative Factors (contd)

Mathematically, they are represented by the standardized vectors:

1 1 1
DOl = _(_17 170)7D02 - _(_1707 1)7D12 = _(O’_l’ 1)

V2 V2 V2

These contrasts are not orthogonal to each other and have pairwise

correlations of 1/2 or —1/2.

On the other hand, each of them is readily interpretable as a comparison
between two of the three levels.

The two contrasts should be chosen to be of interest to the investigator. For
example, if level 0 is the main supplier and levels 1 and 2 are minor
suppliers, then Dy and Dg; should be used.

Qualitative and Quantitative Factors

e The interaction between a quantitative factor and a qualitative factor, say
A x D, can be decomposed into four effects.

e Asin (5), we define the four interaction effects as follows:

(AD) 01 (i, j) = Ar()Do1 (),
(AD)102(i, J) = Ai1(i)Do2(J), @®)
(AD)401(i, j) = Ag(D)Do1 (),
(AD)q.02(i,J) = Ag(i)Do2(J).-




Variable Selection Strategy

Since many of these contrasts are not mutually orthogonal, a general purpose
analysis strategy cannot be based on the orthogonality assumption. Therefore,
the following variable selection strategy is recommended.

(i) For a quantitative factor, say A, use A; and A, for the A main effect.

(ii) For a qualitative factor, say D, use D; and D if D, is interpretable; otherwise, select two
contrasts from Dy, Dz, and D15 for the D main effect.

(iif) For a pair of factors, say X and Y, use the products of the two contrasts of X and the two
contrasts of Y (chosen in (1) or (i1)) as defined in (5) or (8) to represent the four degrees of
freedom in the interaction X x Y.

(iv) Using the contrasts defined in (i)-(iii) for all the factors and their two-factor interactions as
candidate variables, perform a stepwise regression or subset selection procedure to identify a
suitable model. To avoid incompatible models, use the effect heredity principle to rule out
interactions whose parent factors are both not significant.

(v) If all the factors are quantitative, use the original scale, say x4, to represent the linear effect of A,
xﬁ the quadratic effect and xgx{; the interaction between xf4 and x{;. This works particularly well
if some factors have unevenly spaced levels.
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Analysis of Seat-Belt Experiment

e Returning to the seat-belt experiment, although the original design has
resolution 1V, its capacity for estimating two-factor interactions is much
better than what the definition of resolution IV would suggest.

e After estimating the four main effects, there are still 18 degrees of freedom
available for estimating some components of the two-factor interactions.

e From (2), A, B, C and D are estimable and only one of the two components
1n each of the six interactions A X B,AXC,AXD,BxC,BxDand C xD
1s estimable.

e Because of the difficulty of providing a physical interpretation of an
interaction component, a simple and efficient modeling strategy that does
not throw away the information in the interactions is to consider the
contrasts (A;,A4), (B1,By), (Ci,Cy) and (Do1, Doz, D12) for the main effects
and the 30 products between these four groups of contrasts for the
interactions.
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Analysis of Seat-Belt Experiment (contd)

e Using these 39 contrasts as the candidate variables, the variable selection

procedure was applied to the data.

e Performing a stepwise regression on the strength data (response yy), the
following model with an R? of 0.811 was identified:

$I = 6223.0741+1116.2859A; — 190.2437A, + 178.6885B,
—589.5437C; +294.2883(AB),; + 627.9444(AC) 9)
—191.2855D0; — 468.4190D, — 486.4444(CD); 12

e Note that this model obeys effect heredity. The A, B, C and D main effects
and A X B, A x C and C x D interactions are significant. In contrast, the
simple analysis from the previous section identified the A, C and D main
effects and the AC(= BD?) and AB(= CD?) interaction components as
significant.
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Analysis of Seat-Belt Experiment (contd)
e Performing a stepwise regression on the flash data (response y»), the
following model with an R? of 0.857 was identified:
vo = 13.6657+ 1.2408A;+0.1857B;
—0.8551C; +0.2043C, — 0.9406(AC) (10)

—0.3775(AC)y; — 0.3765(BC) ;g — 0.2978(CD); 1

e Again, the identified model obeys effect heredity. The A, B, and C main
effects and A x C, B x C and C x D interactions are significant. In contrast,
the simple analysis from the previous section identified the A and C main
effects and the AC(= BD?), AC? and BC? interaction components as
significant.

v/ Reading: textbook, 6.6




