NTHU STAT 5510, 2024 Lecture Notes

p. 109

Exploitation of Nonlinearity
— 3 :not a straight line (ie.,nota linear ME model) e——
—® Nonhnearlty between y and X can be exploited for robustness if Xg, nominal values

Recall. |of X, are control-factor settings and deviations of X around Xg (i.e., X —Xp) are

item1
(Wpo-7)|viewed as noise factors (called internal noise). Expandly = f (x)[around xo,

avariable Xi= Xio + ﬁ of -
[[a control Sactor X Xio=Ci Yy f(xo)+ Z < F [rl(xi _ XJLO),' C=Xo
a noise factor ft-Xc-Xw-N,, L= II:/‘
(Recall. Errors in predictors, LM, LNp9-7-8) | O-method :
e This leads to l 5 5 ’_Evarot:ﬁ:ionx of Xi

This is @ ar Lo
'Funil:ison va‘” (#5 é_)'_'_-%-% Z (Q_xl | ) ,_G__L'_’,l Cie., Var (VD)) 2
of C t 1 — 5 |

var(x;), each component x; has mean x;p and variance (512

where 6g = var(y), ©

IM)

e From (1), it can be seen that Gs can be reduced by choosing Xi0 with a smaller slope

g{ . This is demonstrated in Figure 1. Moving the nominal value g to b can —
1 'xO

reduce var(y) because the slope at b is more flat. This is a parameter design step.

e On the other hand, reducing the variation of x around a can also reduce var(y). This

is a tolerance design step. L l
item 4 in LNp.10-6 »

@ Exploitation of Nonlinearity to Reduce Variation
But. their means En(¥¢) also change : §ta)— 5(b)

Hint. Use other control factors that have an effect signifcant
on Ey(4e) but no effect on Vary(4<) to adjust ME(N) &
the mean back to $(@). (&fau_sfﬂ%f_ﬁbls) Iat (C.N)
I ) ———— KT L2 4[ — C+
c%fclx=a. i B aflx-b- - -4
( = , . -~ C-
nor-linear
f‘“) """""""""""" (curvature)
= relationship
p'tal region of ¢ ‘ ‘ - J)N
e:; &;v region’ eg;‘éil\ll region -— =+
¢ 3 N:mi‘se g (desi n parameter
' a-R +R bR °  b+R =
'—C_—:R‘H;Tm _”/éﬁ =) | =Y+
desgr C- <ol facor—3 C+ Cy £ oA

b=k bR |

Figure 1: Exploiting the Nonlinearity of f(x) to Reduce Variation 'ﬁ';" 1lin
p10~7

% Reading: textbook, 11.4
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p. 10-11

Cross Array and Location-Dispersion Modeling
the whole dc +Nc runs

. dn < Ny runs
design matrix n |||~ N

oy ontrol arraii noise array, <= C/c@ ch- NcxNy runs

e Cross arra

— control array (or inner array) Lin Z‘.e de;ﬂnl m::b&nx (oM),
~ . : each control settings
= array (design matrix) for control factors, are “crossed” with
— noise array (or outer array) Same noise seh‘:tlgs
= array (design matrix) for noise factors. (eg-. DM in LNpI0-4~5)
,F. . -~
~® Location-dispersion modeling < 5"‘3'“ array m
use noise array LNp.10-29
compute y, s? based on the noise settings for the Lh control setting,
use control array t same settings
(5 analyze y; (location), and In i (dispersion), identify
significant location and dispersion effects.-]
— ab-- -
same analysis strategy [ | Build 2 models : < AB.. d 4 3:2
used in CH4 & CHS G=xB1+ & model =i | ©Si
for da(:o. with P SI:X ‘g’ 4 matrix dc | a;m
replicates « nS =xPat€ )] x =+ B4 G
L now, ots Srom di M) yneon | LS3

p. 10-12

Two-step Procedures for RPD Optimization

t —location & dispersion models
o Two-Step Procedure for Nominal-the-Best Problem

~—(1) select the levels of the dispersion factors to minimize dispersion, « US@

dispersion
r-.@ select the level of the adjustment factor (if exists) to bring the "'wde‘ @
location on target. « yse location model for 525 for ZzS‘g

e Two-Step Procedure for Larger-the-Better and Smaller-the-Better Problems

— (1) select the levels of the location factors to maximize (or minimize)
the location, < USe location model for Fy

(3)
———(i1) select the levels of the dispersion factors that are not location factors —

to minimize dispersion. < use dispersion model for QnSx%

e Note that the two steps in (3) are in reverse order from those in (2).
Reason: It is usually harder to increase or decrease the response y in the
latter problem, so this step should be the first to perform.
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p. 10-13

Analysis of Layer Growth Experiment

e From the y; and In s-2 columns of Table 5 (LNp.10-14), compute the factorial

effect estimates for location and dispersion respectively. (These numbers are

(exercise)ed

not given in the textbook.) From the half-normal plots of these effects

(Figure 2, LNp.10-15), D is significant for location and H, A for dispersion.

deposition time
Note. There is no significant . ¥ adjustment
"2 inthe 2 models. ¥y = 18352+0402xp, S-aacfor
. resolution=1¥ , In§® = —1.822+ 0.619x4 —0.982xy
if 2fi’sare si gnnfican{: b
-> dealmswg
e Two-step procedure:
(1) Choose A at the “—"" level (continuous rotation) and H at the “4” level
(nozzle position = 6). —& (H+, A=) 1
— o+
(i1) By solving large
D-
¥=14.352+0.402xp = 14.5, —
Tonget TN

value

choose —1 < xp =0.368 < 1. I—inte.rpolml-:ion »

p. 10-14

@ Layer Growth Experiment: Analysis Results

Table 5: Means, Log Variances and SN Ratios, Layer Growth Experiment

8-y G@ -SAIraw‘:to
dc 12 .’I-’;_g: ‘Fam {Control Factor| r_"-'{"—'—_ 7‘ = [03 ( )
e |ZBTLTE G|y s | et
?‘;?shd' — - — + — — — —|1479 [-1Jo18|5PBRY 6.4l
ygl - 4+ 4 1+ ¢ 1 |([@36 380507 0.3} Table 2
=-ABCD effects — — 4+ — — — 4+ 41400 [-4205[spFs 9.48 | | (LNp.10-4)
= ABEF = -CDEF - =+ = 4+ 4+ = —[1391 —é623 sPbs  6.89 uie 8@‘.1
= ACEG = - — + — — — + — +|1415 |-3306 | 5209 10.60 | | observations
___-A-‘—c-gg_ 8DEG - + — — 4+ — + —|13.80 |-1{236 | 5P50 6.49 | | to caleulate
= BCFG =-ADFG — 4+ 4+ + — + + —[1473 |-0{760 | 5880 6.14 | | them
= BCEH = -ADEH — 4+ + + + — — +]|1489 —3503 s4b1 6.90
= ACFH = -BDFH + — — — — 4+ + —[1393 |-0383[5pb8 5.65
= ABGH =-CDGH + — — — 4+ — — +114.09 |-2180|5pRp1 7.47
- - + — 4+ + — 4+ — +[1479 |-1]238 |5B8B8 6.63
-f’:&”"‘ AB;DEF'G.-H == 1433 =368 {54619
(check LNp10-4 + 4+ — 4+ — — + +|1477 [-1§483 [5PB6 6.87
+ + — + + + — —|1488 |-0418|5kp0 5.82
SR N —— 13.76 |—0{418 | 5ph3  5.66
C‘""'QP{“"‘I"""’del2 o+ o+ -+ o+ 4+ 41397 |-2l636 | skpa 7.01
T or s 0~.-5L0.2~0.¢

Z =Bo + 5= Bi (factorial effect); + € (no replicates)

Lan dlias set contributes an effect
agoint eﬁ:“tj = estimate 15 effects — no df. left for residuals

0>
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@ Layer Growth Experiment: Plots "
(os=tcn)

Note, signi ficant
effects for

' ' location and
0.0 0.5 1.0 1.5 2.0 25

. dispersion are
half-normal quantiles

$vom different
== Sockors, _

absolute effects
00 02 04 06 08

absolute effects
00 05 10 15 20

Alternative: . , | | | |
LQ’!'HI’S 0.0 0.5 1.0 15 2.0 2.5
methd half-normal quantiles

T Figure 2: Half-Normal Plots of Location and Dispersion Effects,
~Layer Growth Experiment

p. 10-16

Analysis of Leaf Spring Experiment

e From the y; and In Siz columns of Table 6 (LNp.10-17), compute the factorial effect

(everci )E?timates for location and dispersion respectively. Based on the half-normal plots
exercise
in Figure 3 (LNp.10-18), B, C and E are significant for location, C is significant for

dispersion: adjustment facfor——'l.'
7.6360+0.1 106x_§:+ 0.0881 x +0.0519%z"
—3.6886 + 1.0901x_g.

akternative: Uuse MSE = Var+bias* (check LNp5-29)
e Two-step procedure: T +to choose a seH:ing
(i) Choose C at —. =» Ccompromising var & bias.
can do

(ii) Withxc=—1, §=7.5479+0.1106xz +0.0519xz. confirm
— - . — — exp't

|~=>
I

,_

=

o
I

* To achieve § = 8.0, xp and xg must be chosen beyond +1 (e.g.,
xp = xg = 2.78). This is too drastic, and not validated by current data.

extrapolation -

* An alternative is to select xg = xg = xc = +1 (not to follow the two-step
procedure), then y=7.89 1is closer to 8. (Note that y = 7.71 with ByC_Ey .)

* Reason for the breakdown of the 2-step procedure: its second step cannot
achieve the target 8.0. exchange Ist & 2nd stepsd—’ »
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I=BCDE
alias sets:
B=CDE
C=BDE
D= B8CE
E= BCD
8C=DE
BD=CE
BE=CD

dc: 2‘;‘ (8 runs)

@ Leaf Spring Experiment: Analysis Results

Control Factor ‘l‘"'PP'!'COﬁf

B C D E| ¥ Ins?

— 4+ + — | 7540 24075
+ + + 4+ | 7902 —2.6488
- — 4+ 4| 7520 -6.9486
+ — 4+ —|7640 —4.8384
- 4+ - 4+ | 7670 —2.3987
+—+——— [ 7785 ——2.9392
— = = = 7372 -3.2697
+ - — + | 7660 —4.0582

conceptual model : similar +o what given in LNp0-IU

p. 10-17

Table 6: Means and Log Variances, Leaf Spring Experiment

Alternative:
Lenth's
method

absolute effects

absolute effects

0.15

0.05

05 1.0 15 20

@ Leaf Spring Experiment: Plots

| Iocationl

0.0

0.5

1.0

1.5 2.0

half-normal quantiles

dispersion

0.0

0.5

1.0

1.5 2.0

half-normal quantiles

T Figure 3: Half-Normal Plots of Location and Dispersion Effects,

Teaf Spring Experiment

p. 10-18
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. Locat p-10-19
Response Modeling and ,_C.f_.@
Control-by-Noise Interaction Plots ("¢"4J)
graphs in LNp.10-8 < iy — {@ may mask some important
® Response Model: model y;; directly in terms l‘-""—"‘ms,uP btw € & N Sactors
o @ model <> approximation
control-by-noise interactions. @: IZS sd: :sg':ho: way to u:: i,
— half normal plot of various effects. build linear models ?
constant variance
Recall .role of
E(Y1€,N) [noise Sackors (o 104)
@ treat N as rv. -H:svalue iS fixed
L&Qb_q_-oEN (f£(s. ) ﬁ in experiment

of control and noise main effects and

— regression model fitting, obtaining . ~ £(S N) + é—
graphical method Cintuitive perception) ® $~F(EXN)

Make control-by-noise interaction plots

for significant effects in J, choose robust

control settings at which y has a flatter gicoorsion+hry (5.4 . |ts value is‘random|
relationship with noise factors.  poh are functions QE C only in normal usage

numerical method (easier for prediction) objective
Compute Vary(yx) with respect to variation response variable or -[ modeli ng-b
in the noise factors. Call Vary(Jy) the no need to be identical
transmitted variance model. Use itto | & What_variable 's.mremfo
e contol factor settines with sl be the response in the frtted
1dentily control factor settings with sma model ? APP’V approximation
transmitted variance. viewpoint.

p. 10-20

Half-normal Plot, Layer Growth Experiment——

e Define ﬁ"q: ;’_::‘:;zbm LNp.IO 4,!0-!4 l"‘l coclms B e — Slfoﬂdllaf‘t'o H'le
— - Mo Mg Mc= coaing for
R My = (M +My) — (M3 +M,), "l'] _:l :ﬁ ! =MMg pseudo block
Box My = (M +My) — (My+Ms), 2 - - + factors in
3 + - = block FFD

=My +M3)— (Ma+My), 3 + +
3 main effects < E: benefit of this
e From Figure 4 (LNp.10-21), select the effects codmg °rﬁ°3°"al'ty

D, L, HL as the most significant effects. “The whole design matrix of
L causes larger variation C &N factors (dc®dy) can be
e How to deal with the next cluster of effects reaarded as a 50
in Figure 4? Use step-down multiple 2( 8+ 3) 4 (128 r::; 1
comparisons. With the deﬁm ng contrast
, T subgroup given in LNp.I0-I4,
e After removing the top three points in Figure 4,

on the remaining points. The cluster of next

make a half-normal plot (Figure 5, LNp.10-22) | rconceptual model : Similar
+o what give
four effects (M;,H,CM;,AHM ) appear to be LNp.10-14 (no replicate)

significant. ¢ K ﬁ-"‘c’zﬁ{; L '—veéicgmtefacbmalaﬂ‘acts Y
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p. 10-21

Ao Half-normal Plot of Factorial Effects

Notel. Signiﬁ'canl:
, C XN interaction
only involve the
noise factor L,

06
-0

absolute effects
04

0.2

00

0.0 0.5 1.0 1.5 2.0 2.5

half-normal quantiles

Figure 4: Half-Normal Plot of Response Model Effects,
Layer Growth Experiment

0>

p. 10-22

o Second Half-normal Plot of Factorial Effects

Note. significant
|

C xN interaction

only involve the

noise Factor M

0.15
1

0.10
|

absolute effects

0.05
|

0.00
|

0.0 0.5 1.0 1.5 2.0 25

half-normal quantiles

Figure 5: Second Half-Normal Plot of Response Model Effects,
Layer Growth Experiment
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3 ° canifi nf p. 10-23
Control-by-noise Interaction Plots Significa —
o T
can reduce =
laarger > o I‘ > H=+
variation o
2 i
© Q
(C}e noise Sactor

14.5

14.3

14.1

@ 6 0
noise Factor
Figure 6: H x L and C x M Interaction Plots, Layer Growth Experiment

p. 10-24

Ao Three-factor Interaction Plot: A x H xM

% HxL, and AxH*M
interaction lof:s
offer more ghzscgl i
interpretation about
how the variakion
caused by the noise
factors L&M is
related to the control
fmd:ors A&H. 3 ArH-
(cf. location-dispersion. Y

moaeling)

14.6

14.4
I

3 y

fromCMintenction plt1 @ O O O
from HxL, interaction plot pl .4- noise {actor

Recommendation : (H+,C-,A =) «<E— recommendation from dispersion
model in LNp.I0-I3

Figure 7: A x H x M Interaction Plot, Layer Growth Experiment
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p. 10-25

Response Modeling, Layer Growth Experiment
$rom half- normal plots in LNp10-21~22

The following model is obtained: can adjust Ep(4]€)
2
% *
-y = 14.352+0.402xp + 0.087x_ﬂ + 0.33OX_L— 0.090xp,

E(glc,u)l —0.239 xpr x, = 0.083xc Xy, = 0.082 x4 xpy X, “)
if treated

What
Es random? | if treat Xu, XMy, XM as random variables with mean O

e Recommendations:

H: —(position 2)  to {+|(position 6)

A: 4 (oscillating)  to
C:  +(1210) to |—1(1220)

resulting in 37% reduction of thickness standard variation.

0>

‘ o - p. 10-26
Transmitted Variance Model i
o Assume L, M; and M, are random variables, taking o2 + ZH'ang,
—_— |
—1 and +1 with equal probabilities. This leads to p M M) Aw, 7;"&' ZMc
2 2 42 2 2 Ve 1 - -
X=Xy, =Xy, =xg =g = =1, ;233 ;- n
—_— —_— —_— - -— ] e
E(x) = E(xu,) = E(xm,) =0, osd + + | + 5
Cov(xp,xpm,) = Cov(xr,xm,) = Cov(xpy, xm,) =0, Xu, %Me.?tms. T
— ind
Var(x.) = Var(xu,) = Var(xm,) = 1. o

e From (4) and (5), we have
§ Varn (Fx) = (.330 — 239y )2 Var(xg) + (=090 — .083xc)2 Var(xy,)

Tary [E(yls. ) (082143 PVar(a, )
dpesion] constant + (330 — 2397 )2 + (—.090 — .083x¢- )% + (0.082) X2 X2
mode| constant — 2(.330)(.239) xg +2(,090) (,083)xc T

i Note Tf ME Mg is
constant — .158X_ﬂ + .OIS.X_Q. \Assume onl in the model—;‘r

E location
mode|
— Zeg-l,+1 A nbeset =0
C N)| = 2+ 0.402Xp+ 0.0 2AAcCo =0,
E!!. [E (5( ~? J] 1435 t02Xo 87+ iS allowed . J)| this term can be

e Choose H+ and C—. But factor A is not present here. used to reduce

(Why? See explanation on textbook, p.532). varionce.
optimal settings

¢ Reading: textbook, 11.5 L What Ff we add Em’xug into model (4) in LNp.w -287? 4—" discussed in 619

I gl
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