

p. 10-8

Variation Reduction Through RPD

Suppose $\underline{y} = \underline{f(\underline{x}, \underline{z})}$, \underline{x} control factors and \underline{z} noise factors. If \underline{x} and \underline{z} interact in their effects on \underline{y} , then the $\underline{var_{\underline{z}}(\underline{y})}$ can be reduced either by reducing $\underline{var(\underline{z})}$ (i.e., method 4 in LNp.10-6) or by changing the \underline{x} values (i.e., RPD).

By choosing an appropriate value of x_2 to reduce the coefficient $\beta + \gamma x_2$, the impact of z on y can be reduced. Since β and γ are unknown, this can be achieved by using the control-by-noise interaction plots or other methods to

