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Robust Parameter Design

e Statistical/engineering method for product/process improvement (Taguchi).

e Two types of factors in a system (product/process):
— control factors: once chosen, values remain fixed.

— noise factors: hard-to-control during normal process or usage.

e Robust Parameter design (RPD or PD): choose control factor settings to
make response less sensitive (i.e., more robust) to noise variation; exploiting
control-by-noise interactions.
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A Robust Design Perspective of
Layer-growth and Leaf Spring Experiments

e The original AT&T layer growth experiment had

— 8 control factors,
— 2 noise factors (location and facet).

Goal was to achieve uniform thickness around 14.5 um over the noise
factors. See Tables 1 and 2 (LNp.10-3~4).

e The original leaf spring experiment had
— 4 control factors,
— 1 noise factor (quench oil temperature). The quench oil temperature is

not controllable; with efforts it can be set in two ranges of values
130-150, 150-170.

Goal is to achieve uniform free height around 8 inches over the range of
quench oil temperature. See Tables 3 and 4 (LNp.10-5).

e Must understand the role of noise factors in achieveing robustness. »




. Layer Growth Experiment: Factors and Levels

Table 1: Factors and Levels, Layer Growth Experiment
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Level
Control Factor — +
A.  susceptor-rotation method continuous  oscillating
B.  code of wafers 668G4 678D4
C. deposition temperature(°C) 1210 1220
D. deposition time short long
E. arsenic flow rate(%) 55 59
F.  hydrochloric acid etch temperature(°C) 1180 1215
G.  hydrochloric acid flow rate(%) 10 14
H. nozzle position 2 6
T avual
i1L/.CovVVel
Noise Factor — +
L. location bottom top
facet 1 2 3 4
‘ o R p. 10-4
Layer Growth Experiment: Thickness Data
Table 2: Cross Array and Thickness Data,
Layer Growth Experiment
Noise Factor
Control Factor L-Bottom L-Top
ABCDEVFGH M-1 M-2 M-3 M-4 M-1 M-2 M-3 M-4
_— 14.2908 14.1924 14.2714 14.1876]15.3182 15.4279 15.2657 15.4056
—— — + 4+ + + 14.8030 14.7193 14.6960 14.7635]|14.9306 14.8954 14.9210 15.1349
—— +—— — + + 13.8793 13.9213 13.8532 14.0849]14.0121 13.9386 14.2118 14.0789
- —+ -+ + - - 13.4054 13.4788 13.5878 13.5167|14.2444 14.2573 14.3951 14.3724
-+ - = =4+ -+ 14.1736 14.0306 14.1398 14.0796]14.1492 14.1654 14.1487 14.2765
e 13.2539 13.3338 13.1920 13.4430]14.2204 14.3028 14.2689 14.4104
-+ 4+ 4+ -+ + - 14.0623 14.0888 14.1766 14.0528|15.2969 15.5209 15.4200 15.2077
=+ +++ ==+ 14.3068 14.4055 14.6780 14.5811]15.0100 15.0618 15.5724 15.4668
+ - — = — 4+ + - 13.7259 13.2934 12.6502 13.2666|14.9039 14.7952 14.1886 14.6254
F= == F = = F 13.8953 14.5597 14.4492 13.7064(13.7546 14.3229 14.2224 13.8209
+ -+ + -4+ -+ 14.2201 14.3974 15.2757 15.0363(14.1936 14.4295 15.5537 15.2200
+—-—+++ -+ - 13.5228 13.5828 14.2822 13.8449(14.5640 14.4670 15.2293 15.1099
++——+—++ 14.5335 14.2492 14.6701 15.2799]14.7437 14.1827 14.9695 15.5484
++-+++ - - 14.5676 14.0310 13.7099 14.6375]15.8717 15.2239 14.9700 16.0001
++4+-———- 12.9012 12.7071 13.1484 13.8940[14.2537 13.8368 14.1332 15.1681
+ 4+ 4+ -4+ ++ + 13.9532 14.0830 14.1119 13.5963|13.8136 14.0745 14.4313 13.6862




Leaf Spring Experiment

Table 3: Factors and Levels,

Leaf Spring Experiment
Level
Control Factor —
B. high heat temperature (°F) | 1840 1880
C. heating time (seconds) 23 25
D. transfer time (seconds) 10 12
E. hold down time (seconds) 2 3
Level
Noise Factor — +

Q. quench oil temperature (°F)

130-150 150-170

Table 4: Cross Array and Height Data,
Leaf Spring Experiment

Control Factor

Noise Factor

BCDE 0" o+

— + 4+ — | 7.78 7.78 7.81|7.50 7.25 7.12
+ 4+ + + | 8.158.18 7.88|7.88 7.88 7.44
— — 4+ | 7.50 7.56 7.50|7.50 7.56 7.50
+—+— | 759 7.56 7.75|7.63 7.75 1.56
— 4+ — + | 7.948.00 7.88(7.32 7.44 7.44
+ 4+ — — | 7.69 8.09 8.06|7.56 7.69 7.62
— — — — | 756 7.62 7.44|7.18 7.18 7.25
+ — —+ | 7.56 7.81 7.69|7.81 7.50 7.59

+ Reading: textbook, 11.1
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Strategies for Variation Reduction

. Sampling inspection: passive, sometimes last resort.

% Reading: textbook, 11.2

robust parameter design!

is stable, it can be followed by using a designed experiment.

not for removing root causes.

4. Reducing variation in noise factors: effective as it may reduce variation in the

(cheaper and easier to do) by exploiting control-by-noise interactions, i.e., use

p. 106

2. Control charting and process monitoring: can remove special causes. If the process

3. Blocking, covariate adjustment: passive measures but useful in reducing variability,

response but can be expensive. Better approach is to change control factor settings
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Types of Noise Factors

1. Variation in process parameters.
2. Variation in product parameters.
3. Environmental variation.

4. Load Factors.

5. Upstream variation.

6. Downstream or user conditions.
7. Unit-to-unit and spatial variation.
8. Variation over time.

9. Degradation.

e Traditional design uses 7 and 8.
+ Reading: textbook, 11.3
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Variation Reduction Through RPD

e Suppose y = f(x,z), x control factors and z noise factors. If x and z interact
in their effects on y, then the var,(y) can be reduced either by reducing
var(z) (i.e., method 4 in LNp.10-6) or by changing the x values (i.e., RPD).

e An example:
y = p+oxi+Pz+vxz+¢,
= ptox+(B+yx)zt+e.
By choosing an appropriate value of x, to reduce the coefficient 3 4y x,, the

impact of z on y can be reduced. Since 3 and y are unknown, this can be
achieved by using the control-by-noise interaction plots or other methods to

be presented later.
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Exploitation of Nonlinearity

e Nonlinearity between y and x can be exploited for robustness if Xy, nominal values
of x, are control-factor settings and deviations of x around xg (i.e., X — Xg) are
viewed as noise factors (called internal noise). Expand y = f(x) around X,

0
y%f(Xo)vLZ <~5){;— ) (xi —xi0)-

2
o7, (1)
J Xi0

= var(y), 67 = var(x;), each component x; has mean x;y and variance 6.

e This leads to

where 62

e From (1), it can be seen that 6% can be reduced by choosing x;y with a smaller slope
% . This is demonstrated in Figure 1. Moving the nominal value a to b can
L X0

reduce var(y) because the slope at b is more flat. This is a parameter design step.

e On the other hand, reducing the variation of x around a can also reduce var(y). This
is a tolerance design step. »
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Exploitation of Nonlinearity to Reduce Variation

_ Jx)

y (response)

N b x (design parameter)

Figure 1: Exploiting the Nonlinearity of f(x) to Reduce Variation

% Reading: textbook, 11.4
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Cross Array and Location-Dispersion Modeling

e Cross array = control array X noise array,

— control array (or inner array)
= array (design matrix) for control factors,

— noise array (or outer array)
= array (design matrix) for noise factors.

e Location-dispersion modeling

2

+ based on the noise settings for the i control setting,

— compute y;, §

— analyze y; (location), and In si2 (dispersion), identify
significant location and dispersion effects.
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Two-step Procedures for RPD Optimization

e Two-Step Procedure for Nominal-the-Best Problem
(1) select the levels of the dispersion factors to minimize dispersion,

(i1) select the level of the adjustment factor (if exists) to bring the (2)
location on target.

e Two-Step Procedure for Larger-the-Better and Smaller-the-Better Problems

(1) select the levels of the location factors to maximize (or minimize)
the location,

(11) select the levels of the dispersion factors that are not location factors

to minimize dispersion.

e Note that the two steps in (3) are in reverse order from those in (2).

Reason: It is usually harder to increase or decrease the response y in the

latter problem, so this step should be the first to perform.
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Analysis of Layer Growth Experiment

e From the y; and In s;?‘ columns of Table 5 (LNp.10-14), compute the factorial
effect estimates for location and dispersion respectively. (These numbers are
not given in the textbook.) From the half-normal plots of these effects
(Figure 2, LNp.10-15), D is significant for location and H, A for dispersion.

9 = 14.352+0.402xp,
In§g® = —1.822+0.619x4 —0.982xy.

e Two-step procedure:

(1) Choose A at the “—” level (continuous rotation) and H at the “+4” level
(nozzle position = 6).

(11) By solving
v =14.352+0.402xp = 14.5,

choose —1 < xp = 0.368 < 1.

N

®  Layer Growth Experiment: Analysis Results

Table 5: Means, Log Variances and SN Ratios, Layer Growth Experiment

Control Factor
A BCDEFGH|y s |h? @
— — — + — — — —[1479 —1.018]5389 6.41
— — — + + + + +[1486 -3.879|5397 9.8
— — 4+ — — — + +|1400 4205|5278 9.48
— = 4+ — + + — —[1391 1623|5265 6.89
— 4 - — — + — +|1415 53065299 10.60
— + — — + — + —|1380 -1236(5250 6.49
— 4+ 4+ + — + + —[1473 0760|5380 6.14
— 4+ 4+ + + — — +[1489 -1503 5401 6.90
+ - — — — 4+ + —|1393 —0383]5.268 5.65
+ - = — 4+ — — +[1409 -2.180|5.291 7.47
+ -+ + — 4+ — +]1479 12385388 6.63
1435 ROR 53246715
+ 4+ — + — — + +|1477 -1483[5386 6.87
+ + — + + + — —|1488 0418|5400 5.82
. 13.76 —0.418 [5.243 5.66
+ 4+ + — + 4+ + +]1397 —2.636]5274 791
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. Layer Growth Experiment: Plots
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Figure 2: Half-Normal Plots of Location and Dispersion Effects,
Layer Growth Experiment
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Analysis of Leaf Spring Experiment

e From the y; and In s,-2 columns of Table 6 (LNp.10-17), compute the factorial effect
estimates for location and dispersion respectively. Based on the half-normal plots
in Figure 3 (LNp.10-18), B, C and E are significant for location, C is significant for

dispersion:
y = 7.636040.1106xp +0.0881xc +0.0519xg,
In§® = —3.6886+1.0901xc.

e Two-step procedure:
(1) Choose C at —.

(i) Withxc=—1, y=7.54794+0.1106xp +0.0519x¢.
* 'To achieve y = 8.0, xp and xg must be chosen beyond +1 (e.g.,

s a}

xp = xg = 2.78). This is too drastic, and not validated by current data.

* An alternative is to select xp = xg = xc = +1 (not to follow the two-step
procedure), then y=7.89 is closer to 8. (Note that y =7.71 with By C_E_..)

* Reason for the breakdown of the 2-step procedure: its second step cannot
achieve the target 8.0. »
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€ Leaf Spring Experiment: Analysis Results

Table 6: Means and Log Variances, Leaf Spring Experiment

Control Factor

B C D E| 73 Ins?

- 4+ 4+ = | 7540 =2.4075
+ + + + | 7902 —2.6488
- — 4+ 4+ | 7520 —6.9486
+ - 4+ — | 7640 —4.8384
- 4+ = 4+ | 7.670  —=2.3987
+ + = = | 7785 =2.9392
- — - —|17372 -=3.2697
+ - = + | 7660 —4.0582
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€ Leaf Spring Experiment: Plots
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Figure 3: Half-Normal Plots of Location and Dispersion Effects,
Leaf Spring Experiment
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Response Modeling and
Control-by-Noise Interaction Plots

e Response Model: model y;; directly in terms
of control and noise main effects and

control-by-noise interactions.
- half normal plot of various effects.

— regression model fitting, obtaining .

e Make control-by-noise interaction plots
for significant effects in J, choose robust
control settings at which y has a flatter

relationship with noise factors.

e Compute Vary(¥x) with respect to variation
in the noise factors. Call Vary (Jx) the
transmitted variance model. Use it to
identify control factor settings with small
transmitted variance.
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Half-normal Plot, Layer Growth Experiment
e Define
M; = (M +M;) — (M3 +M,),
My = (M +My) — (M +M3),
M. = (M1 +M3) — (M> +My),

e From Figure 4 (LNp.10-21), select the effects
D, L, HL as the most significant effects.

e How to deal with the next cluster of effects
in Figure 4?7 Use step-down multiple
comparisons.

e After removing the top three points in Figure 4,
make a half-normal plot (Figure 5, LNp.10-22)
on the remaining points. The cluster of next
four effects (M;, H,CM;,AHM ) appear to be

significant. »




\_ Half-normal Plot of Factorial Effects
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Figure 4: Half-Normal Plot of Response Model Effects,
Layer Growth Experiment
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@ Second Half-normal Plot of Factorial Effects
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Figure 5: Second Half-Normal Plot of Response Model Effects,
Layer Growth Experiment
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Control-by-noise Interaction Plots
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Figure 6: H x L and C x M Interaction Plots, Layer Growth Experiment
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Three-factor Interaction Plot: A x H xM
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Figure 7: A x H x M Interaction Plot, Layer Growth Experiment




Response Modeling, Layer Growth Experiment

e The following model is obtained:

—  14.352+0.402xp + 0.087 x5 +0.330x; — 0.090 3

i osvpy N easad ISV Uau/u./vlyll

Sy

—0.239xg x, —0.083 xc xp1, — 0.082x4 X XM, -

e Recommendations:
H:——(position2)—to—(position6)
A:  + (oscillating) to — (continuous)
C: +(1210) to —(1220)

resulting in 37% reduction of thickness standard variation.
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4

. Transmitted Variance Model

e Assume L, M; and M are random variables, taking
—1 and +1 with equal probabilities. This leads to

22 2 2 .2 .2
xL—le—qu—xA—xC—xH—l,

E(xy) = E(xm,) = E(xm,) =0,
Cov(xr,xpm,) = Cov(xr,xpm,) = Cov(xp,,xm,) =0,
Var(xp) = Var(xy,) = Var(xy,) = 1.

e From (4) and (5), we have
Vary(§x) = (.330 —.239x ) Var(xr) + (—.090 — .083xc)? Var(xp, )

+(.082x4x57 )% Var xm,)
= constant + (.330 — .239x5 )% + (—.090 — .083x¢ )
= constant — 2(.330)(.239) xy +2(.090)(.083)xc

= constant —.158 xy + .015x¢.

e Choose H+ and C—. But factor A is not present here.
(Why? See explanation on textbook, p.532).

% Reading: textbook, 11.5
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)
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Estimation Capacity for Cross Arrays

e Example.

— Control array is a 4-run 2;;,' design with
I=ABC.

— Noise array is a 4-run 23, design with
I=abc.

— The resulting cross array is a 16-run

2?,;2 design with

I =ABC = abc = ABCabc.

— Easy to show that all 9 control-by-noise
interactions are clear, (but not the 6 main effects).

e This is indeed a general result stated in next slide.
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Estimation Capacity for Cross Arrays (Cont.)
e Theorem. Suppose
— a2K=P design dc is chosen for the control array,
— a 2" % design dy is chosen for the noise array, and
— across array, denoted by d¢ ® dy, 1s constructed from d¢ and dy.
(i) If
* {ay,...,0 } are the estimable factorial effects (among the control
factors) in d¢ and

* { B1,...,Pp} are the estimable factorial effects (among the noise
factors) in dy,

then {0y, B, 03} fori=1,...,A, j=1,...,B are estimable in dc @ dy.
(i1) All the km control-by-noise two-factor interactions (i.e., two-factor
interactions between a control factor main effect and a noise factor main

effect) are clear in dc Q dy.




Cross Arrays or Single Arrays?

e Three control factors A, B, C and two noise factors a, b:
Cross array requires 23 ® 22 full factorial design (32 runs)
for allowing all main effects and two-factor interactions
to be clearly estimated.

e Use a single array with 16 runs for all five factors:
In the resolution V 2°~! design with
I=ABCab or 1= —ABCab,

all main effects and two-factor interactions are clear.
(See Table 7, LNp.10-30)

e Single arrays can have smaller runs, but
cross arrays are easier to use and interpret.
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@ 32-run Cross Array and 16-run Single Arrays

Table 7: 32-Run Cross Array

a + + . —
b + — + -

Runs A B C
1-4 -+ + + ° o) o °
5-8 + + - o J U o
9-12 + — + o ° ° o
13-16 + — — ° o o °
17-20 — + + o ° ° o
2124 — + . ° 0 o °
25-28 — — + ° o o °
29-32 — — — o ° ° o

o: I=ABCab;,o:1=—ABCab

+ Reading: textbook, 11.6, 11.7
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Comparison of Cross Arrays
and Single Arrays

e Example 1 (continued)
— An alternative is to choose a single array 2%7 2 design with
I = ABCa = ABbc = abcC. This is not advisable because
no 2fi’s are clear and only main effects are clear. (Why? We
need to have some clear control-by-noise interactions for robust optimization.)

— A better one is to use a 2?[,‘2 design with I = ABCa = abc = ABCbc.
It has 9 clear effects: A,B,C,Ab,Ac,Bb,Bc,Cb,Cc (3 control main effects and 6

control-by-noise interactions).

+ Reading: textbook, 11.8
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Signal-to-Noise Ratio

=2
e Taguchi’s SN ratio fix = In y—;
SX

e Two-step procedure:
1. Select control factor levels to maximize SN ratio

2. Use an adjustment factor to move mean on target.

e Limitations
— maximizing y2 not always desired.
—little justification outside linear circuitry.

— statistically justifiable only when Vary(yx)
is proportional to [Ey(yx)]?

e Recommendation: Use SN ratio sparingly. Better to use the

location-dispersion modeling or the response modeling.

The latter strategies can do whatever SN ratio analysis can achieve. »




. S/N Ratio Analysis for "
Layer Growth Experiment

e Based on the 1j; column in Table 5 (LNp.10-14), compute the factorial effects using
SN ratio. A half-normal plot of the effects for 1); is given in Figure 8 (LNp.10-34).

From Figure 8, the conclusion is similar to location-dispersion analysis. Why? Using

ﬁi - ln)_;zz _lnSi27

and from Table 5, the variation among In s? is much larger than the variation among

In yl?; thus maximizing SN ratio is equivalent to minimizing In S? in this case.
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Half-normal Plot for S/N Ratio Analysis

0.6 0.8 1.0
|

absolute effects

04

e AE

0.2
1

I I I I I I
0.0 0.5 1.0 1.5 2.0 2.5

half-normal quantiles

Figure 8: Half-Normal Plots of Effects Based on SN Ratio,
Layer Growth Experiment

% Reading: textbook, 11.9




