Robust Parameter Design

- Statistical/engineering method for product/process improvement (Taguchi).
- Two types of factors in a system (product/process):
 - control factors: once chosen, values remain fixed.
 - noise factors: hard-to-control during normal process or usage.
- Robust Parameter design (RPD or PD): choose control factor settings to make response less sensitive (i.e., more robust) to noise variation; exploiting control-by-noise interactions.

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

A Robust Design Perspective of Layer-growth and Leaf Spring Experiments

- The original AT&T layer growth experiment had
 - 8 control factors,
 - 2 noise factors (location and facet).

Goal was to achieve *uniform* thickness around 14.5 μ m over the noise factors. See Tables 1 and 2 (LNp.10-3 \sim 4).

- The original leaf spring experiment had
 - 4 control factors,
 - 1 noise factor (quench oil temperature). The quench oil temperature is not controllable; with efforts it can be set in two ranges of values 130-150, 150-170.

Goal is to achieve *uniform* free height around 8 inches over the range of quench oil temperature. See Tables 3 and 4 (LNp.10-5).

• Must understand the role of *noise factors* in achieveing *robustness*.

Layer Growth Experiment: Factors and Levels

Table 1: Factors and Levels, Layer Growth Experiment

		Level					
	Control Factor	_	+				
<i>A</i> .	susceptor-rotation method	continuous	oscillating				
В.	code of wafers	668G4	678D4				
<i>C</i> .	deposition temperature(°C)	1210	1220				
D.	deposition time	short	long				
E.	arsenic flow rate(%)	55	59				
F.	hydrochloric acid etch temperature(°C)	1180	1215				
G.	hydrochloric acid flow rate(%)	10	14				
H.	nozzle position	2	6				
		Level					
	Noise Factor	_	+				
L.	location	bottom	top				
<i>M</i> .	facet	1 2	3 4				

p. 10-4

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

Layer Growth Experiment: Thickness Data

Table 2: Cross Array and Thickness Data,
Laver Growth Experiment

Layer Growth Experiment												
					Noise	Factor						
	Control Factor	Control Factor L-Bottom										
	A B C D E F G H	<i>M</i> -1	<i>M</i> -2	<i>M</i> -3	M-4	<i>M</i> -1	<i>M</i> -2	<i>M</i> -3	M-4			
	+	14.2908	14.1924	14.2714	14.1876	15.3182	15.4279	15.2657	15.4056			
	+++++	14.8030	14.7193	14.6960	14.7635	14.9306	14.8954	14.9210	15.1349			
	+++	13.8793	13.9213	13.8532	14.0849	14.0121	13.9386	14.2118	14.0789			
	+-+	13.4054	13.4788	13.5878	13.5167	14.2444	14.2573	14.3951	14.3724			
	-+++	14.1736	14.0306	14.1398	14.0796	14.1492	14.1654	14.1487	14.2765			
	-++-	13.2539	13.3338	13.1920	13.4430	14.2204	14.3028	14.2689	14.4104			
	-+++-+-	14.0623	14.0888	14.1766	14.0528	15.2969	15.5209	15.4200	15.2077			
	-+++++	14.3068	14.4055	14.6780	14.5811	15.0100	15.0618	15.5724	15.4668			
	+++-	13.7259	13.2934	12.6502	13.2666	14.9039	14.7952	14.1886	14.6254			
	++	13.8953	14.5597	14.4492	13.7064	13.7546	14.3229	14.2224	13.8209			
	+-++-+-+	14.2201	14.3974	15.2757	15.0363	14.1936	14.4295	15.5537	15.2200			
	+ - + + + - + -	13.5228	13.5828	14.2822	13.8449	14.5640	14.4670	15.2293	15.1099			
	++-+-++	14.5335	14.2492	14.6701	15.2799	14.7437	14.1827	14.9695	15.5484			
	++-++	14.5676	14.0310	13.7099	14.6375	15.8717	15.2239	14.9700	16.0001			
	+++	12.9012	12.7071	13.1484	13.8940	14.2537	13.8368	14.1332	15.1681			
	+ + + - + + + +	13.9532	14.0830	14.1119	13.5963	13.8136	14.0745	14.4313	13.6862			
,												

p. 10-6

Leaf Spring Experiment

Table 3: Factors and Levels, Leaf Spring Experiment

Control Factor	Level +				
B. high heat temperature (°F)	1840	1880			
C. heating time (seconds)	23	25			
D. transfer time (seconds)	10	12			
E. hold down time (seconds)	2	3			
Noise Factor	Level				
Q. quench oil temperature (°F)	130-150	150-170			

Table 4: Cross Array and Height Data, Leaf Spring Experiment

	1 0 1													
Co	ntrol Factor	Noise Factor												
B	C D E		Q^{-}			Q^+								
_	++-	7.78	7.78	7.81	7.50	7.25	7.12							
+	+++	8.15	8.18	7.88	7.88	7.88	7.44							
_	-++	7.50	7.56	7.50	7.50	7.56	7.50							
+	- + -	7.59	7.56	7.75	7.63	7.75	7.56							
_	+ - +	7.94	8.00	7.88	7.32	7.44	7.44							
+	+	7.69	8.09	8.06	7.56	7.69	7.62							
		7.56	7.62	7.44	7.18	7.18	7.25							
+	+	7.56	7.81	7.69	7.81	7.50	7.59							

* Reading: textbook, 11.1

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

Variation Daduction

Strategies for Variation Reduction

is stable, it can be *followed* by using a *designed experiment*.

1. **Sampling inspection**: passive, sometimes last resort.

- 2. *Control charting and process monitoring*: can remove special causes. If the process
- 3. *Blocking, covariate adjustment*: passive measures but useful in reducing variability, not for removing root causes.
- 4. *Reducing variation in noise factors*: effective as it may reduce variation in the response but can be expensive. Better approach is to change control factor settings (*cheaper* and *easier* to do) by exploiting control-by-noise interactions, i.e., use robust parameter design!

* Reading: textbook, 11.2

ı	Types of Noise Factors
	1. Variation in process parameters.
	2. Variation in product parameters.
	3. Environmental variation.
	4. Load Factors.
	5. Upstream variation.
	6. Downstream or user conditions.
	7. Unit-to-unit and spatial variation.
	8. Variation over time.
	9. Degradation.
•	Traditional design uses 7 and 8.
Read	ling: textbook, 11.3
	NTHU STAT 5510, 2024, Lecture Notes jointly made by Jeff Wu (GT, USA) and SW. Cheng (NTHU, Taiwan)
	Variation Reduction Through RPD
•	Suppose $y = f(\mathbf{x}, \mathbf{z})$, \mathbf{x} control factors and \mathbf{z} noise factors. If \mathbf{x} and \mathbf{z} interaction
	in their effects on y, then the $var_{\mathbf{z}}(y)$ can be reduced either by reducing
	$var(\mathbf{z})$ (i.e., method 4 in LNp.10-6) or by changing the \mathbf{x} values (i.e., RPD)
•	An example:
	$y = \mu + \alpha x_1 + \beta z + \gamma x_2 z + \varepsilon,$
	$= \mu + \alpha x_1 + (\beta + \gamma x_2) z + \varepsilon.$
	By choosing an appropriate value of x_2 to reduce the coefficient $\beta + \gamma x_2$, the impact of z on y can be reduced. Since β and γ are unknown, this can be
	achieved by using the control-by-noise interaction plots or other methods to be presented later.

Exploitation of Nonlinearity

• Nonlinearity between y and \mathbf{x} can be exploited for robustness if \mathbf{x}_0 , nominal values of \mathbf{x} , are control-factor settings and deviations of \mathbf{x} around \mathbf{x}_0 (i.e., $\mathbf{x} - \mathbf{x}_0$) are viewed as noise factors (called *internal noise*). Expand $y = f(\mathbf{x})$ around \mathbf{x}_0 ,

$$y \approx f(\mathbf{x}_0) + \sum_{i} \left(\left. \frac{\partial f}{\partial x_i} \right|_{x_{i0}} \right) (x_i - x_{i0}).$$

• This leads to

$$\sigma^2 \approx \sum_{i} \left(\left. \frac{\partial f}{\partial x_i} \right|_{x_{i0}} \right)^2 \sigma_i^2, \tag{1}$$

where $\sigma^2 = var(y)$, $\sigma_i^2 = var(x_i)$, each component x_i has mean x_{i0} and variance σ_i^2 .

- From (1), it can be seen that σ^2 can be reduced by choosing x_{i0} with a smaller slope $\frac{\partial f}{\partial x_i}\Big|_{x_{i0}}$. This is demonstrated in Figure 1. Moving the nominal value a to b can reduce var(y) because the slope at b is more flat. This is a **parameter design** step.
- On the other hand, reducing the variation of x around a can also reduce var(y). This is a **tolerance design** step.

p. 10-10

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

Exploitation of Nonlinearity to Reduce Variation

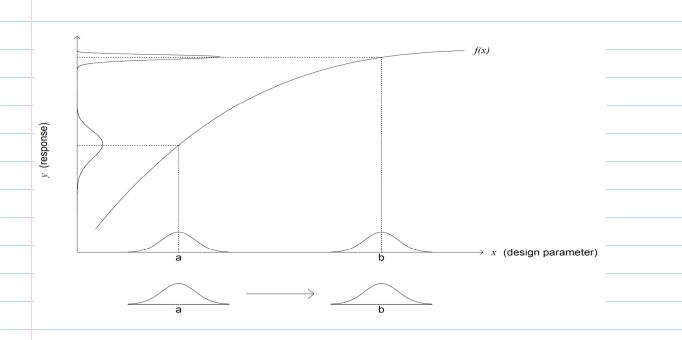
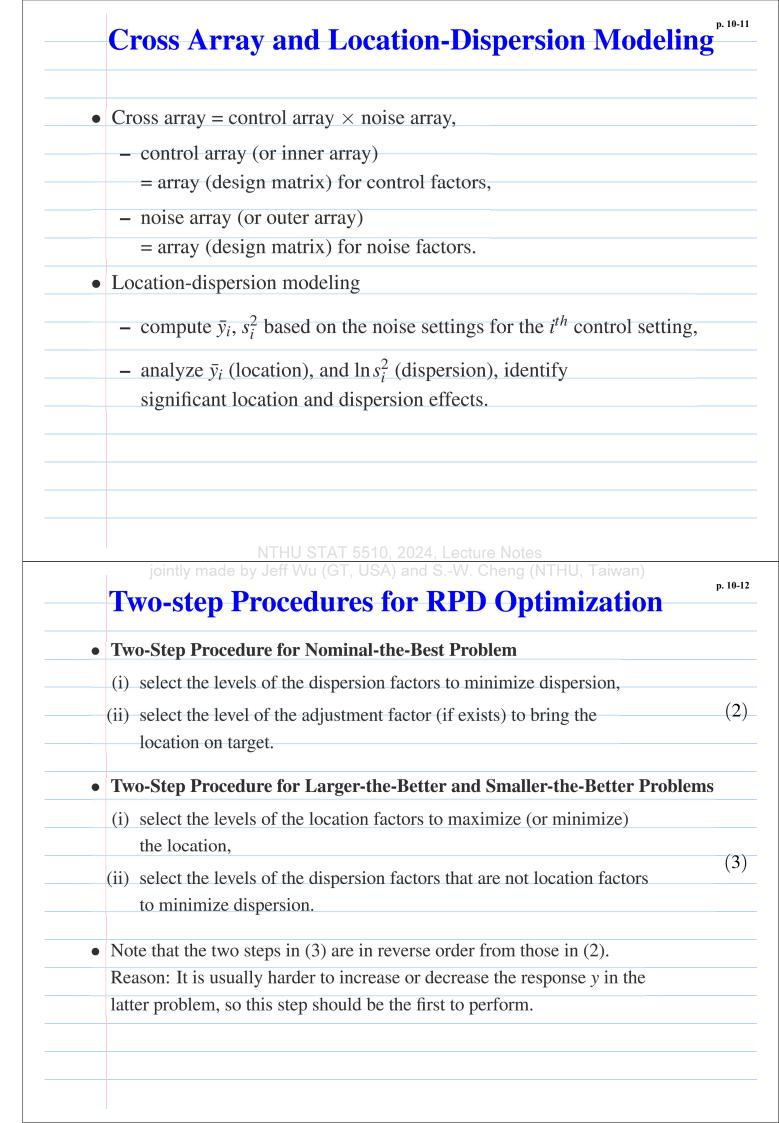


Figure 1: Exploiting the Nonlinearity of f(x) to Reduce Variation



Analysis of Layer Growth Experiment

• From the \bar{y}_i and $\ln s_i^2$ columns of Table 5 (LNp.10-14), compute the factorial effect estimates for location and dispersion respectively. (These numbers are not given in the textbook.) From the half-normal plots of these effects (Figure 2, LNp.10-15), D is significant for location and H, A for dispersion.

$$\hat{y} = 14.352 + 0.402x_D,$$

$$\ln \hat{s}^2 = -1.822 + 0.619x_A - 0.982x_H.$$

- Two-step procedure:
 - (i) Choose A at the "-" level (continuous rotation) and H at the "+" level (nozzle position = 6).
 - (ii) By solving

$$\hat{y} = 14.352 + 0.402 x_D = 14.5,$$

choose $-1 < x_D = 0.368 < 1$.

p. 10-14

NTHU STAT 5510, 2024, Lecture Notes

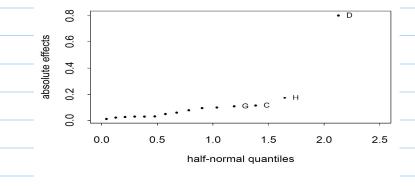
ointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

Layer Growth Experiment: Analysis Results

Table 5: Means, Log Variances and SN Ratios, Layer Growth Experiment

			Cor	ıtrol	Fac	ctor						
A	4	В	C	D	\boldsymbol{E}	F	G	H	\bar{y}_i	$\ln s_i^2$	$\ln \bar{y}_i^2$	$\hat{\eta}_i$
-	_	_	_	+	_	_	_	_	14.79	-1.018	5.389	6.41
_	_	_	_	+	+	+	+	+	14.86	-3.879	5.397	9.28
-	_	_	+	_	_	_	+	+	14.00	-4.205	5.278	9.48
	_	_	+	-	+	+	_	_	13.91	-1.623	5.265	6.89
-	_	+	_	_	_	+	_	+	14.15	-5.306	5.299	10.60
-	_	+	_	_	+	_	+	_	13.80	-1.236	5.250	6.49
	_	+	+	+	_	+	+		14.73	-0.760	5.380	6.14
-	_	+	+	+	+	_	_	+	14.89	-1.503	5.401	6.90
-	+	_	_	_	_	+	+	_	13.93	-0.383	5.268	5.65
_	+	_	_	_	+	_	_	+	14.09	-2.180	5.291	7.47
-	+	_	+	+	_	+	_	+	14.79	-1.238	5.388	6.63
-	+	_	+	+	+	_	+	_	14.33	-0.868	5.324	6.19
-	+	+	_	+	_	_	+	+	14.77	-1.483	5.386	6.87
-	+	+	_	+	+	+	_	_	14.88	-0.418	5.400	5.82
	+-	+	+	_	_	_	_	_	13.76	-0.418	5.243	5.66
-	+	+	+	_	+	+	+	+	13.97	-2.636	5.274	7.91

Layer Growth Experiment: Plots



1.0

half-normal quantiles

dispersion

Figure 2: Half-Normal Plots of Location and Dispersion Effects, Layer Growth Experiment

2.0

2.5

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

p. 10-16

Analysis of Leaf Spring Experiment

0.5

0.0

• From the \bar{y}_i and $\ln s_i^2$ columns of Table 6 (LNp.10-17), compute the factorial effect estimates for location and dispersion respectively. Based on the half-normal plots in Figure 3 (LNp.10-18), B, C and E are significant for location, C is significant for dispersion:

$$\hat{y} = 7.6360 + 0.1106x_B + 0.0881x_C + 0.0519x_E,$$

$$\ln \hat{s}^2 = -3.6886 + 1.0901x_C.$$

- Two-step procedure:
 - (i) Choose C at -.
 - (ii) With $x_C = -1$, $\hat{y} = 7.5479 + 0.1106x_B + 0.0519x_E$.
 - * To achieve $\hat{y} = 8.0$, x_B and x_E must be chosen beyond +1 (e.g., $x_B = x_E = 2.78$). This is too drastic, and not validated by current data.
 - * An alternative is to select $x_B = x_C = +1$ (not to follow the two-step procedure), then $\hat{y}=7.89$ is closer to 8. (Note that $\hat{y}=7.71$ with $B_+C_-E_+$.)
 - * Reason for the breakdown of the 2-step procedure: its second step cannot achieve the target 8.0.

(

Leaf Spring Experiment: Analysis Results

Table 6: Means and Log Variances, Leaf Spring Experiment

C	ontro	l Fact	or			
В	C	D	E	\bar{y}_i	$\ln s_i^2$	
_	+	+		7.540	-2.4075	
+	+	+	+	7.902	-2.6488	
_		+	+	7.520	-6.9486	
+		+	_	7.640	-4.8384	
_	+		+	7.670	-2.3987	
+	+			7.785	-2.9392	
_				7.372	-3.2697	
+	_		+	7.660	-4.0582	
				L		

NTHU STAT 5510, 2024, Lecture Notes

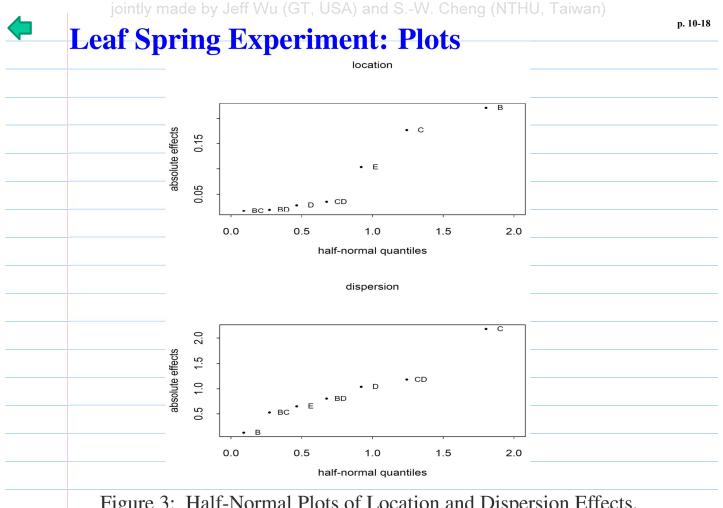


Figure 3: Half-Normal Plots of Location and Dispersion Effects, Leaf Spring Experiment

Response Modeling and Control-by-Noise Interaction Plots

- Response Model: model y_{ij} directly in terms of control and noise main effects and control-by-noise interactions.
 - half normal plot of various effects.
 - regression model fitting, obtaining \hat{y} .
- Make control-by-noise interaction plots for significant effects in ŷ, choose robust control settings at which y has a flatter relationship with noise factors.
- Compute $Var_N(\hat{y}_x)$ with respect to variation in the noise factors. Call $Var_N(\hat{y}_x)$ the **transmitted variance model**. Use it to identify control factor settings with small transmitted variance.

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

Half-normal Plot, Layer Growth Experiment

Define

$$M_l = (M_1 + M_2) - (M_3 + M_4),$$

$$M_q = (M_1 + M_4) - (M_2 + M_3),$$

$$M_c = (M_1 + M_3) - (M_2 + M_4),$$

- From Figure 4 (LNp.10-21), select the effects D, L, HL as the most significant effects.
- How to deal with the next cluster of effects in Figure 4? Use step-down multiple comparisons.
- After removing the top three points in Figure 4, make a half-normal plot (Figure 5, LNp.10-22) on the remaining points. The cluster of next four effects (M_l, H, CM_l, AHM_q) appear to be significant.

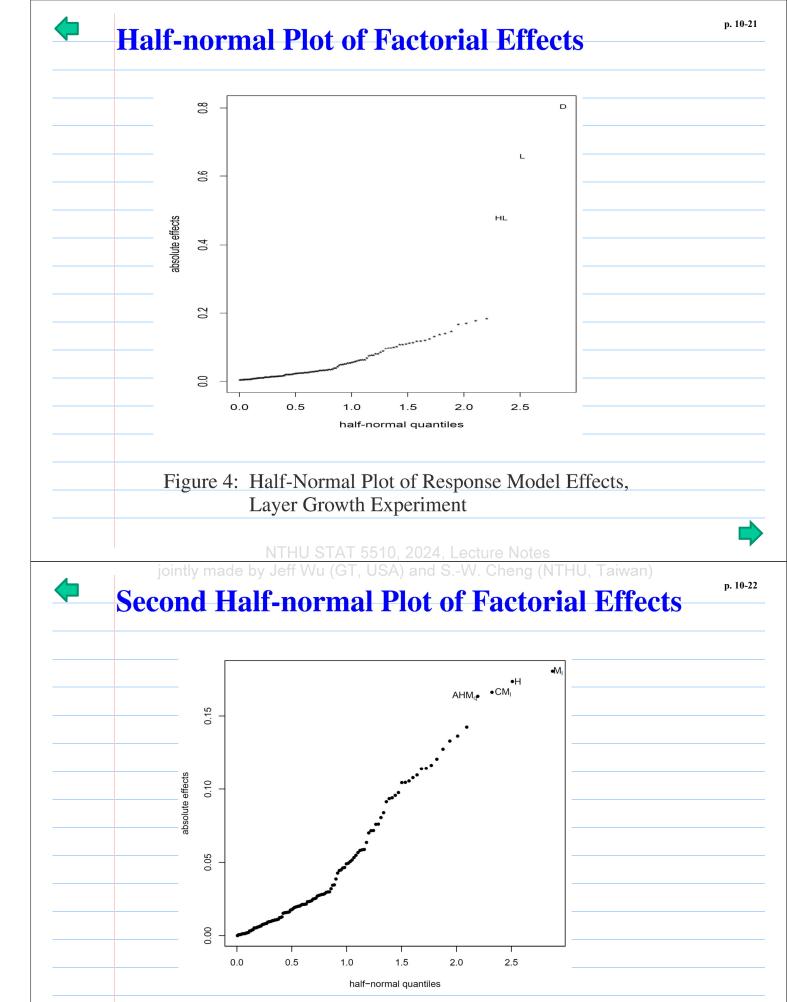


Figure 5: Second Half-Normal Plot of Response Model Effects, Layer Growth Experiment

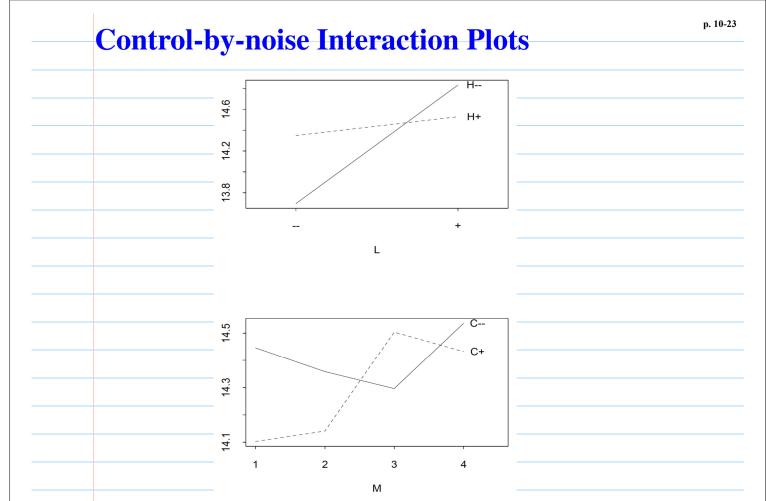


Figure 6: $H \times L$ and $C \times M$ Interaction Plots, Layer Growth Experiment

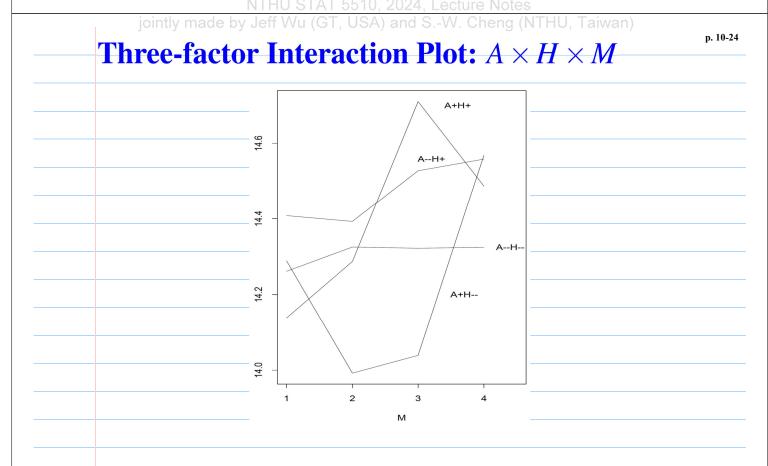


Figure 7: $A \times H \times M$ Interaction Plot, Layer Growth Experiment

Response Modeling, Layer Growth Experiment

• The following model is obtained:

$$\hat{y} = 14.352 + 0.402x_D + 0.087x_H + 0.330x_L - 0.090x_{M_l}$$

$$-0.239x_Hx_L - 0.083x_Cx_{M_l} - 0.082x_Ax_Hx_{M_q}. \tag{4}$$

• Recommendations:

$$H$$
: - (position 2) to + (position 6)

A:
$$+$$
 (oscillating) to $-$ (continuous)

$$C: + (1210)$$
 to $- (1220)$

resulting in 37% reduction of thickness standard variation.

n. 10-26

(5)

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

Transmitted Variance Model

- Assume L, M_l and M_q are random variables, taking
 - -1 and +1 with equal probabilities. This leads to

$$x_L^2 = x_{M_l}^2 = x_{M_q}^2 = x_A^2 = x_C^2 = x_H^2 = 1,$$

$$E(x_L) = E(x_{M_l}) = E(x_{M_q}) = 0,$$

 $Cov(x_L, x_{M_l}) = Cov(x_L, x_{M_q}) = Cov(x_{M_l}, x_{M_q}) = 0,$

$$Var(x_L) = Var(x_{M_t}) = Var(x_{M_a}) = 1.$$

• From (4) and (5), we have

$$Var_N(\hat{y}_{\mathbf{x}}) = (.330 - .239x_H)^2 Var(x_L) + (-.090 - .083x_C)^2 Var(x_{M_l})$$

$$+(.082x_Ax_H)^2 Var(x_{M_a})$$

=
$$\cosh + (.330 - .239x_H)^2 + (-.090 - .083x_C)^2$$

=
$$\operatorname{constant} - 2(.330)(.239)x_H + 2(.090)(.083)x_C$$

- = constant $-.158x_H + .015x_C$.
- Choose H+ and C-. But factor A is not present here.

(Why? See explanation on textbook, p.532).

* Reading: textbook, 11.5

Estimation Capacity for Cross Arrays

- Example.
 - Control array is a 4-run 2_{III}^{3-1} design with

$$\mathbf{I} = ABC$$
.

- Noise array is a 4-run 2_{III}^{3-1} design with

$$\mathbf{I} = abc$$
.

- The resulting cross array is a 16-run 2_{III}^{6-2} design with

$$I = ABC = abc = ABCabc$$
.

- Easy to show that all 9 control-by-noise interactions are clear, (but not the 6 main effects).
- This is indeed a general result stated in next slide.

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

Estimation Capacity for Cross Arrays (Cont.)

- Theorem. Suppose
 - a 2^{k-p} design d_C is chosen for the control array,
 - a 2^{m-q} design d_N is chosen for the noise array, and
 - a cross array, denoted by $d_C \otimes d_N$, is constructed from d_C and d_N .
 - (i) If
 - * $\{\alpha_1, \dots, \alpha_A\}$ are the estimable factorial effects (among the control factors) in d_C and
 - * $\{\beta_1, \dots, \beta_B\}$ are the estimable factorial effects (among the noise factors) in d_N ,

then $\{\alpha_i, \beta_j, \alpha_i \beta_j\}$ for i = 1, ..., A, j = 1, ..., B are estimable in $d_C \otimes d_N$.

(ii) All the km control-by-noise two-factor interactions (i.e., two-factor interactions between a control factor main effect and a noise factor main effect) are clear in $d_C \otimes d_N$.

Cross Arrays or Single Arrays?

- Three control factors A, B, C and two noise factors a, b:

 Cross array requires $2^3 \otimes 2^2$ full factorial design (32 runs) for allowing all main effects and two-factor interactions to be clearly estimated.
- Use a single array with 16 runs for all five factors: In the resolution V 2^{5-1} design with

$$\mathbf{I} = ABCab$$
 or $\mathbf{I} = -ABCab$,

all main effects and two-factor interactions are clear. (See Table 7, LNp.10-30)

• Single arrays can have smaller runs, but cross arrays are easier to use and interpret.

p. 10-30

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

4

32-run Cross Array and 16-run Single Arrays

Table 7: 32-Run Cross Array

				a	+	+	_	_	
				b	+	_	+	_	
	Runs	\boldsymbol{A}	В	\boldsymbol{C}					
	1–4	+	+	+	•	0	0	•	
	5–8	+	+	-	0	•	•	0	_
	9–12	+		+	0	•	•	0	
	13–16	+	<u> </u>		•	0	0	-	
	17–20	_	+	_+	0	•	•	0	
	21–24	_	+	_	•	0	0	•	
	25–28	_	_	+	•	0	0	•	
	29–32	_	_	_	0	•	•	0	

 \bullet : $\mathbf{I} = ABCab$; \circ : $\mathbf{I} = -ABCab$

location-dispersion modeling or the response modeling.

The latter strategies can do whatever SN ratio analysis can achieve.

S/N Ratio Analysis for Layer Growth Experiment

• Based on the $\hat{\eta}_i$ column in Table 5 (LNp.10-14), compute the factorial effects using SN ratio. A half-normal plot of the effects for $\hat{\eta}_i$ is given in Figure 8 (LNp.10-34). From Figure 8, the conclusion is similar to location-dispersion analysis. Why? Using

$$\hat{\eta}_i = \ln \bar{y}_i^2 - \ln s_i^2,$$

and from Table 5, the variation among $\ln s_i^2$ is much larger than the variation among $\ln \bar{y}_i^2$; thus maximizing SN ratio is equivalent to minimizing $\ln s_i^2$ in this case.

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

p. 10-34

Half-normal Plot for S/N Ratio Analysis

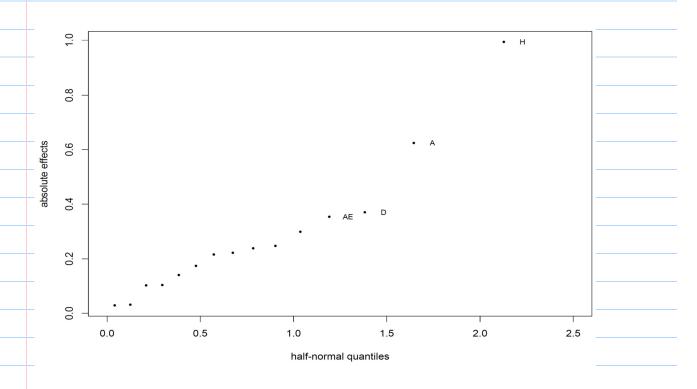


Figure 8: Half-Normal Plots of Effects Based on SN Ratio,
Layer Growth Experiment