#### **Robust Parameter Design**

- Statistical/engineering method for product/process improvement (Taguchi).
- Two types of factors in a system (product/process):
  - control factors: once chosen, values remain fixed.
  - noise factors: hard-to-control during normal process or usage.
- Robust Parameter design (RPD or PD): choose control factor settings to make response less sensitive (i.e., more robust) to noise variation; exploiting control-by-noise interactions.

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

## A Robust Design Perspective of Layer-growth and Leaf Spring Experiments

- The original AT&T layer growth experiment had
  - 8 control factors,
  - 2 noise factors (location and facet).

**Goal** was to achieve *uniform* thickness around 14.5  $\mu$ m over the noise factors. See Tables 1 and 2 (LNp.10-3 $\sim$ 4).

- The original leaf spring experiment had
  - 4 control factors,
  - 1 noise factor (quench oil temperature). The quench oil temperature is not controllable; with efforts it can be set in two ranges of values 130-150, 150-170.

**Goal** is to achieve *uniform* free height around 8 inches over the range of quench oil temperature. See Tables 3 and 4 (LNp.10-5).

• Must understand the role of *noise factors* in achieveing *robustness*.





#### **Layer Growth Experiment: Factors and Levels**

Table 1: Factors and Levels, Layer Growth Experiment

|            |                                        | Level      |             |  |  |  |  |
|------------|----------------------------------------|------------|-------------|--|--|--|--|
|            | Control Factor                         | _          | +           |  |  |  |  |
| <i>A</i> . | susceptor-rotation method              | continuous | oscillating |  |  |  |  |
| В.         | code of wafers                         | 668G4      | 678D4       |  |  |  |  |
| <i>C</i> . | deposition temperature(°C)             | 1210       | 1220        |  |  |  |  |
| D.         | deposition time                        | short      | long        |  |  |  |  |
| E.         | arsenic flow rate(%)                   | 55         | 59          |  |  |  |  |
| F.         | hydrochloric acid etch temperature(°C) | 1180       | 1215        |  |  |  |  |
| G.         | hydrochloric acid flow rate(%)         | 10         | 14          |  |  |  |  |
| H.         | nozzle position                        | 2          | 6           |  |  |  |  |
|            |                                        | Level      |             |  |  |  |  |
|            | Noise Factor                           | _          | +           |  |  |  |  |
| L.         | location                               | bottom     | top         |  |  |  |  |
| <i>M</i> . | facet                                  | 1 2        | 3 4         |  |  |  |  |
|            |                                        |            |             |  |  |  |  |



p. 10-4

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)



### **Layer Growth Experiment: Thickness Data**

Table 2: Cross Array and Thickness Data,
Laver Growth Experiment

| Layer Growth Experiment |                 |                         |             |             |         |             |             |             |         |  |  |  |
|-------------------------|-----------------|-------------------------|-------------|-------------|---------|-------------|-------------|-------------|---------|--|--|--|
|                         |                 |                         |             |             | Noise   | Factor      |             |             |         |  |  |  |
|                         | Control Factor  | Control Factor L-Bottom |             |             |         |             |             |             |         |  |  |  |
|                         | A B C D E F G H | <i>M</i> -1             | <i>M</i> -2 | <i>M</i> -3 | M-4     | <i>M</i> -1 | <i>M</i> -2 | <i>M</i> -3 | M-4     |  |  |  |
|                         | +               | 14.2908                 | 14.1924     | 14.2714     | 14.1876 | 15.3182     | 15.4279     | 15.2657     | 15.4056 |  |  |  |
|                         | +++++           | 14.8030                 | 14.7193     | 14.6960     | 14.7635 | 14.9306     | 14.8954     | 14.9210     | 15.1349 |  |  |  |
|                         | +++             | 13.8793                 | 13.9213     | 13.8532     | 14.0849 | 14.0121     | 13.9386     | 14.2118     | 14.0789 |  |  |  |
|                         | +-+             | 13.4054                 | 13.4788     | 13.5878     | 13.5167 | 14.2444     | 14.2573     | 14.3951     | 14.3724 |  |  |  |
|                         | -+++            | 14.1736                 | 14.0306     | 14.1398     | 14.0796 | 14.1492     | 14.1654     | 14.1487     | 14.2765 |  |  |  |
|                         | -++-            | 13.2539                 | 13.3338     | 13.1920     | 13.4430 | 14.2204     | 14.3028     | 14.2689     | 14.4104 |  |  |  |
|                         | -+++-+-         | 14.0623                 | 14.0888     | 14.1766     | 14.0528 | 15.2969     | 15.5209     | 15.4200     | 15.2077 |  |  |  |
|                         | -+++++          | 14.3068                 | 14.4055     | 14.6780     | 14.5811 | 15.0100     | 15.0618     | 15.5724     | 15.4668 |  |  |  |
|                         | +++-            | 13.7259                 | 13.2934     | 12.6502     | 13.2666 | 14.9039     | 14.7952     | 14.1886     | 14.6254 |  |  |  |
|                         | ++              | 13.8953                 | 14.5597     | 14.4492     | 13.7064 | 13.7546     | 14.3229     | 14.2224     | 13.8209 |  |  |  |
|                         | +-++-+-+        | 14.2201                 | 14.3974     | 15.2757     | 15.0363 | 14.1936     | 14.4295     | 15.5537     | 15.2200 |  |  |  |
|                         | + - + + + - + - | 13.5228                 | 13.5828     | 14.2822     | 13.8449 | 14.5640     | 14.4670     | 15.2293     | 15.1099 |  |  |  |
|                         | ++-+-++         | 14.5335                 | 14.2492     | 14.6701     | 15.2799 | 14.7437     | 14.1827     | 14.9695     | 15.5484 |  |  |  |
|                         | ++-++           | 14.5676                 | 14.0310     | 13.7099     | 14.6375 | 15.8717     | 15.2239     | 14.9700     | 16.0001 |  |  |  |
|                         | +++             | 12.9012                 | 12.7071     | 13.1484     | 13.8940 | 14.2537     | 13.8368     | 14.1332     | 15.1681 |  |  |  |
|                         | + + + - + + + + | 13.9532                 | 14.0830     | 14.1119     | 13.5963 | 13.8136     | 14.0745     | 14.4313     | 13.6862 |  |  |  |
|                         |                 |                         |             |             |         |             |             |             |         |  |  |  |
| ,                       |                 |                         |             |             |         |             |             |             |         |  |  |  |



p. 10-6



#### **Leaf Spring Experiment**

Table 3: Factors and Levels, Leaf Spring Experiment

| Control Factor                 | Level + |         |  |  |  |
|--------------------------------|---------|---------|--|--|--|
| B. high heat temperature (°F)  | 1840    | 1880    |  |  |  |
| C. heating time (seconds)      | 23      | 25      |  |  |  |
| D. transfer time (seconds)     | 10      | 12      |  |  |  |
| E. hold down time (seconds)    | 2       | 3       |  |  |  |
| Noise Factor                   | Level   |         |  |  |  |
| Q. quench oil temperature (°F) | 130-150 | 150-170 |  |  |  |

Table 4: Cross Array and Height Data, Leaf Spring Experiment

|    | 1 0 1        |              |         |      |      |       |      |  |  |  |  |  |  |  |
|----|--------------|--------------|---------|------|------|-------|------|--|--|--|--|--|--|--|
| Co | ntrol Factor | Noise Factor |         |      |      |       |      |  |  |  |  |  |  |  |
| B  | C D E        |              | $Q^{-}$ |      |      | $Q^+$ |      |  |  |  |  |  |  |  |
| _  | ++-          | 7.78         | 7.78    | 7.81 | 7.50 | 7.25  | 7.12 |  |  |  |  |  |  |  |
| +  | +++          | 8.15         | 8.18    | 7.88 | 7.88 | 7.88  | 7.44 |  |  |  |  |  |  |  |
| _  | -++          | 7.50         | 7.56    | 7.50 | 7.50 | 7.56  | 7.50 |  |  |  |  |  |  |  |
| +  | - + -        | 7.59         | 7.56    | 7.75 | 7.63 | 7.75  | 7.56 |  |  |  |  |  |  |  |
| _  | + - +        | 7.94         | 8.00    | 7.88 | 7.32 | 7.44  | 7.44 |  |  |  |  |  |  |  |
| +  | +            | 7.69         | 8.09    | 8.06 | 7.56 | 7.69  | 7.62 |  |  |  |  |  |  |  |
|    |              | 7.56         | 7.62    | 7.44 | 7.18 | 7.18  | 7.25 |  |  |  |  |  |  |  |
| +  | +            | 7.56         | 7.81    | 7.69 | 7.81 | 7.50  | 7.59 |  |  |  |  |  |  |  |

\* Reading: textbook, 11.1

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

Variation Daduction

Strategies for Variation Reduction

is stable, it can be *followed* by using a *designed experiment*.

1. **Sampling inspection**: passive, sometimes last resort.

- 2. *Control charting and process monitoring*: can remove special causes. If the process
- 3. *Blocking, covariate adjustment*: passive measures but useful in reducing variability, not for removing root causes.
- 4. *Reducing variation in noise factors*: effective as it may reduce variation in the response but can be expensive. Better approach is to change control factor settings (*cheaper* and *easier* to do) by exploiting control-by-noise interactions, i.e., use robust parameter design!

\* Reading: textbook, 11.2

| ı    | Types of Noise Factors                                                                                                                                                                  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 1. Variation in process parameters.                                                                                                                                                     |
|      | 2. Variation in product parameters.                                                                                                                                                     |
|      | 3. Environmental variation.                                                                                                                                                             |
|      | 4. Load Factors.                                                                                                                                                                        |
|      | 5. Upstream variation.                                                                                                                                                                  |
|      | 6. Downstream or user conditions.                                                                                                                                                       |
|      | 7. Unit-to-unit and spatial variation.                                                                                                                                                  |
|      | 8. Variation over time.                                                                                                                                                                 |
|      | 9. Degradation.                                                                                                                                                                         |
| •    | Traditional design uses 7 and 8.                                                                                                                                                        |
| Read | ling: textbook, 11.3                                                                                                                                                                    |
|      | NTHU STAT 5510, 2024, Lecture Notes jointly made by Jeff Wu (GT, USA) and SW. Cheng (NTHU, Taiwan)                                                                                      |
|      | Variation Reduction Through RPD                                                                                                                                                         |
| •    | Suppose $y = f(\mathbf{x}, \mathbf{z})$ , $\mathbf{x}$ control factors and $\mathbf{z}$ noise factors. If $\mathbf{x}$ and $\mathbf{z}$ interaction                                     |
|      | in their effects on y, then the $var_{\mathbf{z}}(y)$ can be reduced either by reducing                                                                                                 |
|      | $var(\mathbf{z})$ (i.e., method 4 in LNp.10-6) or by changing the $\mathbf{x}$ values (i.e., RPD)                                                                                       |
| •    | An example:                                                                                                                                                                             |
|      | $y = \mu + \alpha x_1 + \beta z + \gamma x_2 z + \varepsilon,$                                                                                                                          |
|      | $= \mu + \alpha x_1 + (\beta + \gamma x_2) z + \varepsilon.$                                                                                                                            |
|      | By choosing an appropriate value of $x_2$ to reduce the coefficient $\beta + \gamma x_2$ , the impact of $z$ on $y$ can be reduced. Since $\beta$ and $\gamma$ are unknown, this can be |
|      | achieved by using the control-by-noise interaction plots or other methods to be presented later.                                                                                        |
|      |                                                                                                                                                                                         |
|      |                                                                                                                                                                                         |
|      |                                                                                                                                                                                         |

#### **Exploitation of Nonlinearity**

• Nonlinearity between y and  $\mathbf{x}$  can be exploited for robustness if  $\mathbf{x}_0$ , nominal values of  $\mathbf{x}$ , are control-factor settings and deviations of  $\mathbf{x}$  around  $\mathbf{x}_0$  (i.e.,  $\mathbf{x} - \mathbf{x}_0$ ) are viewed as noise factors (called *internal noise*). Expand  $y = f(\mathbf{x})$  around  $\mathbf{x}_0$ ,

$$y \approx f(\mathbf{x}_0) + \sum_{i} \left( \left. \frac{\partial f}{\partial x_i} \right|_{x_{i0}} \right) (x_i - x_{i0}).$$

• This leads to

$$\sigma^2 \approx \sum_{i} \left( \left. \frac{\partial f}{\partial x_i} \right|_{x_{i0}} \right)^2 \sigma_i^2, \tag{1}$$

where  $\sigma^2 = var(y)$ ,  $\sigma_i^2 = var(x_i)$ , each component  $x_i$  has mean  $x_{i0}$  and variance  $\sigma_i^2$ .

- From (1), it can be seen that  $\sigma^2$  can be reduced by choosing  $x_{i0}$  with a smaller slope  $\frac{\partial f}{\partial x_i}\Big|_{x_{i0}}$ . This is demonstrated in Figure 1. Moving the nominal value a to b can reduce var(y) because the slope at b is more flat. This is a **parameter design** step.
- On the other hand, reducing the variation of x around a can also reduce var(y). This is a **tolerance design** step.

p. 10-10

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

#### **\**

#### **Exploitation of Nonlinearity to Reduce Variation**



Figure 1: Exploiting the Nonlinearity of f(x) to Reduce Variation



#### **Analysis of Layer Growth Experiment**

• From the  $\bar{y}_i$  and  $\ln s_i^2$  columns of Table 5 (LNp.10-14), compute the factorial effect estimates for location and dispersion respectively. (These numbers are not given in the textbook.) From the half-normal plots of these effects (Figure 2, LNp.10-15), D is significant for location and H, A for dispersion.

$$\hat{y} = 14.352 + 0.402x_D,$$

$$\ln \hat{s}^2 = -1.822 + 0.619x_A - 0.982x_H.$$

- Two-step procedure:
  - (i) Choose A at the "-" level (continuous rotation) and H at the "+" level (nozzle position = 6).
  - (ii) By solving

$$\hat{y} = 14.352 + 0.402 x_D = 14.5,$$

choose  $-1 < x_D = 0.368 < 1$ .



p. 10-14

NTHU STAT 5510, 2024, Lecture Notes

ointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)



#### **Layer Growth Experiment: Analysis Results**

Table 5: Means, Log Variances and SN Ratios, Layer Growth Experiment

|   |    |   | Cor | ıtrol | Fac              | ctor |   |   |             |             |                   |                |
|---|----|---|-----|-------|------------------|------|---|---|-------------|-------------|-------------------|----------------|
| A | 4  | В | C   | D     | $\boldsymbol{E}$ | F    | G | H | $\bar{y}_i$ | $\ln s_i^2$ | $\ln \bar{y}_i^2$ | $\hat{\eta}_i$ |
| - | _  | _ | _   | +     | _                | _    | _ | _ | 14.79       | -1.018      | 5.389             | 6.41           |
| _ | _  | _ | _   | +     | +                | +    | + | + | 14.86       | -3.879      | 5.397             | 9.28           |
| - | _  | _ | +   | _     | _                | _    | + | + | 14.00       | -4.205      | 5.278             | 9.48           |
|   | _  | _ | +   | -     | +                | +    | _ | _ | 13.91       | -1.623      | 5.265             | 6.89           |
| - | _  | + | _   | _     | _                | +    | _ | + | 14.15       | -5.306      | 5.299             | 10.60          |
| - | _  | + | _   | _     | +                | _    | + | _ | 13.80       | -1.236      | 5.250             | 6.49           |
|   | _  | + | +   | +     | _                | +    | + |   | 14.73       | -0.760      | 5.380             | 6.14           |
| - | _  | + | +   | +     | +                | _    | _ | + | 14.89       | -1.503      | 5.401             | 6.90           |
| - | +  | _ | _   | _     | _                | +    | + | _ | 13.93       | -0.383      | 5.268             | 5.65           |
| _ | +  | _ | _   | _     | +                | _    | _ | + | 14.09       | -2.180      | 5.291             | 7.47           |
| - | +  | _ | +   | +     | _                | +    | _ | + | 14.79       | -1.238      | 5.388             | 6.63           |
| - | +  | _ | +   | +     | +                | _    | + | _ | 14.33       | -0.868      | 5.324             | 6.19           |
| - | +  | + | _   | +     | _                | _    | + | + | 14.77       | -1.483      | 5.386             | 6.87           |
| - | +  | + | _   | +     | +                | +    | _ | _ | 14.88       | -0.418      | 5.400             | 5.82           |
|   | +- | + | +   | _     | _                | _    | _ | _ | 13.76       | -0.418      | 5.243             | 5.66           |
| - | +  | + | +   | _     | +                | +    | + | + | 13.97       | -2.636      | 5.274             | 7.91           |





## **Layer Growth Experiment: Plots**





#### 

1.0

half-normal quantiles

dispersion

Figure 2: Half-Normal Plots of Location and Dispersion Effects, Layer Growth Experiment

2.0

2.5

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

#### p. 10-16

#### **Analysis of Leaf Spring Experiment**

0.5

0.0

• From the  $\bar{y}_i$  and  $\ln s_i^2$  columns of Table 6 (LNp.10-17), compute the factorial effect estimates for location and dispersion respectively. Based on the half-normal plots in Figure 3 (LNp.10-18), B, C and E are significant for location, C is significant for dispersion:

$$\hat{y} = 7.6360 + 0.1106x_B + 0.0881x_C + 0.0519x_E,$$
  

$$\ln \hat{s}^2 = -3.6886 + 1.0901x_C.$$

- Two-step procedure:
  - (i) Choose C at -.
  - (ii) With  $x_C = -1$ ,  $\hat{y} = 7.5479 + 0.1106x_B + 0.0519x_E$ .
    - \* To achieve  $\hat{y} = 8.0$ ,  $x_B$  and  $x_E$  must be chosen beyond +1 (e.g.,  $x_B = x_E = 2.78$ ). This is too drastic, and not validated by current data.
    - \* An alternative is to select  $x_B = x_C = +1$  (not to follow the two-step procedure), then  $\hat{y}=7.89$  is closer to 8. (Note that  $\hat{y}=7.71$  with  $B_+C_-E_+$ .)
    - \* Reason for the breakdown of the 2-step procedure: its second step cannot achieve the target 8.0.

#### **(**

#### **Leaf Spring Experiment: Analysis Results**

Table 6: Means and Log Variances, Leaf Spring Experiment

| C | ontro | l Fact | or |             |             |  |
|---|-------|--------|----|-------------|-------------|--|
| В | C     | D      | E  | $\bar{y}_i$ | $\ln s_i^2$ |  |
| _ | +     | +      |    | 7.540       | -2.4075     |  |
| + | +     | +      | +  | 7.902       | -2.6488     |  |
| _ |       | +      | +  | 7.520       | -6.9486     |  |
| + |       | +      | _  | 7.640       | -4.8384     |  |
| _ | +     |        | +  | 7.670       | -2.3987     |  |
| + | +     |        |    | 7.785       | -2.9392     |  |
| _ |       |        |    | 7.372       | -3.2697     |  |
| + | _     |        | +  | 7.660       | -4.0582     |  |
|   |       |        |    | L           |             |  |



NTHU STAT 5510, 2024, Lecture Notes



Figure 3: Half-Normal Plots of Location and Dispersion Effects, Leaf Spring Experiment

# Response Modeling and Control-by-Noise Interaction Plots

- Response Model: model  $y_{ij}$  directly in terms of control and noise main effects and control-by-noise interactions.
  - half normal plot of various effects.
  - regression model fitting, obtaining  $\hat{y}$ .
- Make control-by-noise interaction plots for significant effects in ŷ, choose robust control settings at which y has a flatter relationship with noise factors.
- Compute  $Var_N(\hat{y}_x)$  with respect to variation in the noise factors. Call  $Var_N(\hat{y}_x)$  the **transmitted variance model**. Use it to identify control factor settings with small transmitted variance.

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

## Half-normal Plot, Layer Growth Experiment

Define

$$M_l = (M_1 + M_2) - (M_3 + M_4),$$

$$M_q = (M_1 + M_4) - (M_2 + M_3),$$

$$M_c = (M_1 + M_3) - (M_2 + M_4),$$

- From Figure 4 (LNp.10-21), select the effects D, L, HL as the most significant effects.
- How to deal with the next cluster of effects in Figure 4? Use step-down multiple comparisons.
- After removing the top three points in Figure 4, make a half-normal plot (Figure 5, LNp.10-22) on the remaining points. The cluster of next four effects  $(M_l, H, CM_l, AHM_q)$  appear to be significant.





Figure 5: Second Half-Normal Plot of Response Model Effects, Layer Growth Experiment



Figure 6:  $H \times L$  and  $C \times M$  Interaction Plots, Layer Growth Experiment



Figure 7:  $A \times H \times M$  Interaction Plot, Layer Growth Experiment

#### Response Modeling, Layer Growth Experiment

• The following model is obtained:

$$\hat{y} = 14.352 + 0.402x_D + 0.087x_H + 0.330x_L - 0.090x_{M_l}$$

$$-0.239x_Hx_L - 0.083x_Cx_{M_l} - 0.082x_Ax_Hx_{M_q}. \tag{4}$$

• Recommendations:

$$H$$
: - (position 2) to + (position 6)

A: 
$$+$$
 (oscillating) to  $-$  (continuous)

$$C: + (1210)$$
 to  $- (1220)$ 

resulting in 37% reduction of thickness standard variation.



n. 10-26

(5)

#### NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)



#### Transmitted Variance Model

- Assume L,  $M_l$  and  $M_q$  are random variables, taking
  - -1 and +1 with equal probabilities. This leads to

$$x_L^2 = x_{M_l}^2 = x_{M_q}^2 = x_A^2 = x_C^2 = x_H^2 = 1,$$

$$E(x_L) = E(x_{M_l}) = E(x_{M_q}) = 0,$$

 $Cov(x_L, x_{M_l}) = Cov(x_L, x_{M_q}) = Cov(x_{M_l}, x_{M_q}) = 0,$ 

$$Var(x_L) = Var(x_{M_t}) = Var(x_{M_a}) = 1.$$

• From (4) and (5), we have

$$Var_N(\hat{y}_{\mathbf{x}}) = (.330 - .239x_H)^2 Var(x_L) + (-.090 - .083x_C)^2 Var(x_{M_l})$$

$$+(.082x_Ax_H)^2 Var(x_{M_a})$$

= 
$$\cosh + (.330 - .239x_H)^2 + (-.090 - .083x_C)^2$$

= 
$$\operatorname{constant} - 2(.330)(.239)x_H + 2(.090)(.083)x_C$$

- = constant  $-.158x_H + .015x_C$ .
- Choose H+ and C-. But factor A is not present here.

(Why? See explanation on textbook, p.532).

\* Reading: textbook, 11.5

#### **Estimation Capacity for Cross Arrays**

- Example.
  - Control array is a 4-run  $2_{III}^{3-1}$  design with

$$\mathbf{I} = ABC$$
.

- Noise array is a 4-run  $2_{III}^{3-1}$  design with

$$\mathbf{I} = abc$$
.

- The resulting cross array is a 16-run  $2_{III}^{6-2}$  design with

$$I = ABC = abc = ABCabc$$
.

- Easy to show that all 9 control-by-noise interactions are clear, (but not the 6 main effects).
- This is indeed a general result stated in next slide.

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

### **Estimation Capacity for Cross Arrays (Cont.)**

- Theorem. Suppose
  - a  $2^{k-p}$  design  $d_C$  is chosen for the control array,
  - a  $2^{m-q}$  design  $d_N$  is chosen for the noise array, and
  - a cross array, denoted by  $d_C \otimes d_N$ , is constructed from  $d_C$  and  $d_N$ .
  - (i) If
    - \*  $\{\alpha_1, \dots, \alpha_A\}$  are the estimable factorial effects (among the control factors) in  $d_C$  and
    - \*  $\{\beta_1, \dots, \beta_B\}$  are the estimable factorial effects (among the noise factors) in  $d_N$ ,

then  $\{\alpha_i, \beta_j, \alpha_i \beta_j\}$  for i = 1, ..., A, j = 1, ..., B are estimable in  $d_C \otimes d_N$ .

(ii) All the km control-by-noise two-factor interactions (i.e., two-factor interactions between a control factor main effect and a noise factor main effect) are clear in  $d_C \otimes d_N$ .

#### **Cross Arrays or Single Arrays?**

- Three control factors A, B, C and two noise factors a, b:

  Cross array requires  $2^3 \otimes 2^2$  full factorial design (32 runs) for allowing all main effects and two-factor interactions to be clearly estimated.
- Use a single array with 16 runs for all five factors: In the resolution V  $2^{5-1}$  design with

$$\mathbf{I} = ABCab$$
 or  $\mathbf{I} = -ABCab$ ,

all main effects and two-factor interactions are clear. (See Table 7, LNp.10-30)

• Single arrays can have smaller runs, but cross arrays are easier to use and interpret.



p. 10-30

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

**4** 

#### 32-run Cross Array and 16-run Single Arrays

Table 7: 32-Run Cross Array

|  |       |                  |          | a                | + | + | _ | _ |   |
|--|-------|------------------|----------|------------------|---|---|---|---|---|
|  |       |                  |          | b                | + | _ | + | _ |   |
|  | Runs  | $\boldsymbol{A}$ | В        | $\boldsymbol{C}$ |   |   |   |   |   |
|  | 1–4   | +                | +        | +                | • | 0 | 0 | • |   |
|  | 5–8   | +                | +        | -                | 0 | • | • | 0 | _ |
|  | 9–12  | +                |          | +                | 0 | • | • | 0 |   |
|  | 13–16 | +                | <u> </u> |                  | • | 0 | 0 | - |   |
|  | 17–20 | _                | +        | _+               | 0 | • | • | 0 |   |
|  | 21–24 | _                | +        | _                | • | 0 | 0 | • |   |
|  | 25–28 | _                | _        | +                | • | 0 | 0 | • |   |
|  | 29–32 | _                | _        | _                | 0 | • | • | 0 |   |
|  |       |                  |          |                  |   |   |   |   |   |

 $\bullet$ :  $\mathbf{I} = ABCab$ ;  $\circ$ :  $\mathbf{I} = -ABCab$ 

location-dispersion modeling or the response modeling.

The latter strategies can do whatever SN ratio analysis can achieve.

## S/N Ratio Analysis for Layer Growth Experiment

• Based on the  $\hat{\eta}_i$  column in Table 5 (LNp.10-14), compute the factorial effects using SN ratio. A half-normal plot of the effects for  $\hat{\eta}_i$  is given in Figure 8 (LNp.10-34). From Figure 8, the conclusion is similar to location-dispersion analysis. Why? Using

$$\hat{\eta}_i = \ln \bar{y}_i^2 - \ln s_i^2,$$

and from Table 5, the variation among  $\ln s_i^2$  is much larger than the variation among  $\ln \bar{y}_i^2$ ; thus maximizing SN ratio is equivalent to minimizing  $\ln s_i^2$  in this case.

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

p. 10-34

#### Half-normal Plot for S/N Ratio Analysis



Figure 8: Half-Normal Plots of Effects Based on SN Ratio,
Layer Growth Experiment