p. 6-26

Use of Design Tables

Minimum aberration (MA) designs are given in the tables in textbook, Appendix 5A.

If two designs are given for same \underline{k} and \underline{p} ,

same if only one design is given.

same if the first is an MA design and # of (treatment) factors

design is the second is better in having a larger number of clear effects.

Two tables are given on next two slides.

Note. O MA criterion favors
no particular factor

• In <u>Table 7</u> (<u>LNp.6-28</u>),

(all factors are equally important)

• the first 2^{9-4} design has MA and 8 clear 2fi's, and

② design not MA but having more clear effects usually favors some particular factors over the other factors.

 \bigcirc the second $\underline{2^{9-4}}$ design is

* the second best according to the MA criterion,
* but has 15 clear 2fi's.

Using Rule (iii) in (2) on LNp.6-10, the second design is better because both have

resolution <u>IV</u> (Details given on <u>p. 234</u> of <u>textbook</u>).

• It is <u>not uncommon</u> to find a <u>design</u> with <u>slightly worse aberration</u> but <u>more clear effects</u>. Thus **the <u>number of clear effects</u>** should be used as a <u>supplementary criterion</u> to the <u>MA criterion</u>.

Table 6: 16-Run 2^{k-p} FFD (k-p=4) form a 24 full factorial in the design matrix.

(\underline{k} is the <u>number of factors</u> and $\underline{F} \& \underline{R}$ is the <u>fraction</u> and <u>resolution</u>.)

	<u>k</u>	F&R	Design Generators ← check LNp. 6-8	Clear Effects
	<u>5</u>	$2\frac{5-1}{V}$	5 = 1234	all five main effects, all 10 2fi's
	6	$2\frac{6-2}{IV}$	$\underline{5} = \underline{123}, \underline{6} = \underline{124}$	all six main effects
Ļ	<u>6*</u>	$2\frac{6-2}{III}$	$\underline{5} = \underline{12}, \underline{6} = \underline{134}$ 9 clear effects —	3, 4, 6, 23, 24, 26, 35, 45, 56
	7	2_{IV}^{7-3}	5 = 123, 6 = 124, 7 = 134	all seven main effects
	8	2_{IV}^{8-4}	5 = 123, 6 = 124, 7 = 134, 8 = 234	all eight main effects
Why ?	9	$2\frac{9-5}{III}$	$-5 = 123, \underline{6} = 124, \underline{7} = 134, \underline{8} = 234, \underline{9} = 1234$	none
<u> </u>	10	2_{III}^{10-6}	$5 = 123, 6 = 124, 7 = 134, 8 = 234, 9 = 1234, t_0 = 34$	none
	11	2_{III}^{11-7}	$5 = 123, 6 = 124, 7 = 134, 8 = 234, 9 = 1234, t_0 = 34, t_1 = 24$	none
	12	2_{III}^{12-8}	$5 = 123, 6 = 124, 7 = 134, 8 = 234, 9 = 1234, t_0 = 34, t_1 =$	none
			$24, t_2 = 14$	
	13	2_{III}^{13-9}	$5 = 123, 6 = 124, 7 = 134, 8 = 234, 9 = 1234, t_0 = 34, t_1 =$	none
			$24, t_2 = 14, t_3 = 23$	
	14	2_{III}^{14-10}	$5 = 123, 6 = 124, 7 = 134, 8 = 234, 9 = 1234, t_0 = 34, t_1 = 124$	none
			$24, t_2 = 14, t_3 = 23, t_4 = 13$	
	15	2_{III}^{15-11}	$5 = 123, 6 = 124, 7 = 134, 8 = 234, 9 = 1234, t_0 = 34, t_1 =$	none
			$24, t_2 = 14, t_3 = 23, t_4 = 13, t_5 = 12$	

p. 6-28

Table 7: <u>32</u> Run $\underline{2^{k-p}}$ FFD ($\underline{k-p=5}$, $\underline{6 \le k \le 11}$)

factors {1,2,3.4.5} form a 25 full factorial in the design matrix.

(\underline{k} is the <u>number of factors</u> and $\underline{F} \& \underline{R}$ is the <u>fraction</u> and <u>resolution</u>.)

	<u>k</u>	F&R	Design Generators	Clear Effects
	6	2_{VI}^{6-1}	6 = 12345	all six main effects, all 15 2fi's
	7	2_{IV}^{7-2}	6 = 123, 7 = 1245	all seven main effects, 14, 15, 17, 24, 25, 27, 34, 35, 37, 45, 46, 47, 56, 57, 67
	8	2_{IV}^{8-3}	6 = 123, 7 = 124, 8 = 1345	all eight main effects, 15, 18, 25, 28, 35, 38, 45, 48, 56, 57, 58, 68, 78
	<u>9</u>	2 <u>N</u>	$\underline{6} = \underline{123}, \underline{7} = \underline{124}, \underline{8} = \underline{125}, \underline{9} = \underline{1345}$	all nine main effects, 19, 29, 39, 49, 59, 69, 79, 89
L	<u>9</u>	2 <u>1V</u>	$\underline{6} = \underline{123}, \underline{7} = \underline{124}, \underline{8} = \underline{134}, \underline{9} = \underline{2345}$	<u>all nine main effects, 15, 19, 25, 29, 35, 39, 45, 49, 56, 57, 58, 59, 69, 79, 89</u>
	10	$2\frac{10-5}{IV}$	$6 = 123, 7 = 124, 8 = 125, 9 = 1345, t_0 = 2345$	all 10 main effects
	10	2_{III}^{10-5}	$6 = 12, 7 = 134, 8 = 135, 9 = 145, t_0 = 345$	3, 4, 5, 7, 8, 9, t ₀ , 23, 24, 25, 27, 28, 29, 2t ₀ , 36, 46, 56, 67, 68, 69, 6t ₀
	<u>11</u>	2 <u>11</u> -6	$6 = 123, 7 = 124, 8 = 134, 9 = 125, \underline{t_0} = 135, \underline{t_1} = 145$	all 11 main effects
	11	2_{III}^{11-6}	$6 = 12, 7 = 13, 8 = 234, 9 = 235, t_0 = 245, t_1 = 1345$	4, 5, 8, 9, t ₀ , t ₁ , 14, 15, 18, 19, 1t ₀ , 1t ₁

<u>Choice</u> of <u>Fractions</u> and <u>Avoidance</u> of Specific Level Combinations

2^P parallel flats

p. 6-29

 $\mathbf{W}_{\mathbf{p}}$

• A 2^{k-p} design has 2^p choices. • isomorphic designs 2^p choices. • isomorphic designs

In general, use randomization to choose one of them.

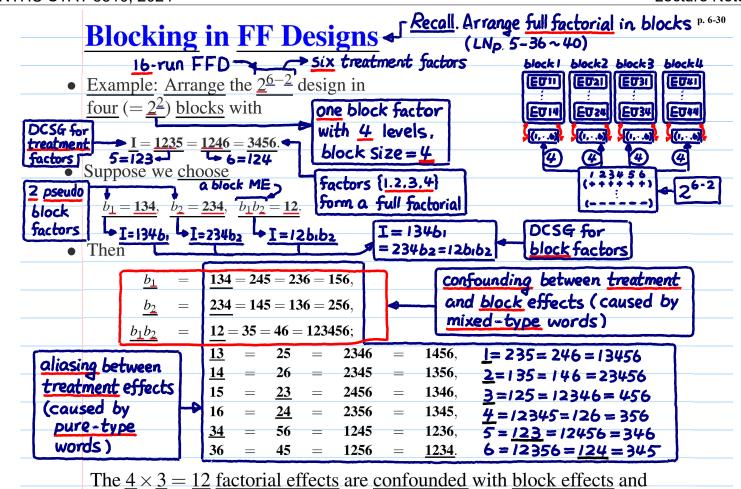
For example, the $\underline{2^{7-3}}$ design has $\underline{8}$ choices

 $4 = \pm 12, 5 = \pm 13, 6 = \pm 23.$

Randomly choose the signs.

different "+" & "-" signs
for W1...., Wp can generate
different choices of the
2 k-p design (check LNp.6-6).
But, they are isomorphic designs.

• If specific level combinations, e.g.,


might cause explosion -

(+,+,+) for <u>high</u> pressure, <u>high</u> temperature, <u>high</u> concentration,-

are deemed <u>undesirable</u> or even <u>disastrous</u>, they can be <u>avoided</u> by <u>choosing</u> a <u>fraction</u> that does <u>not contain</u> them. <u>Example</u> on <u>p.237</u> of <u>textbook</u>.

* Reading: textbook, 5.5

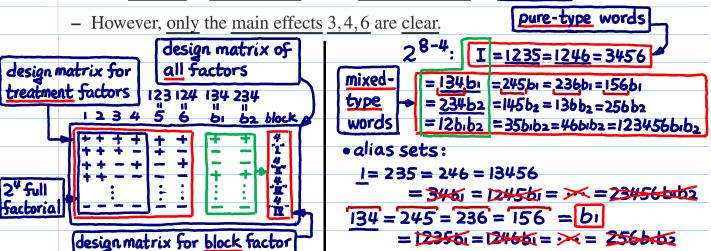
p. 6-31

Use of Design Tables for Blocking

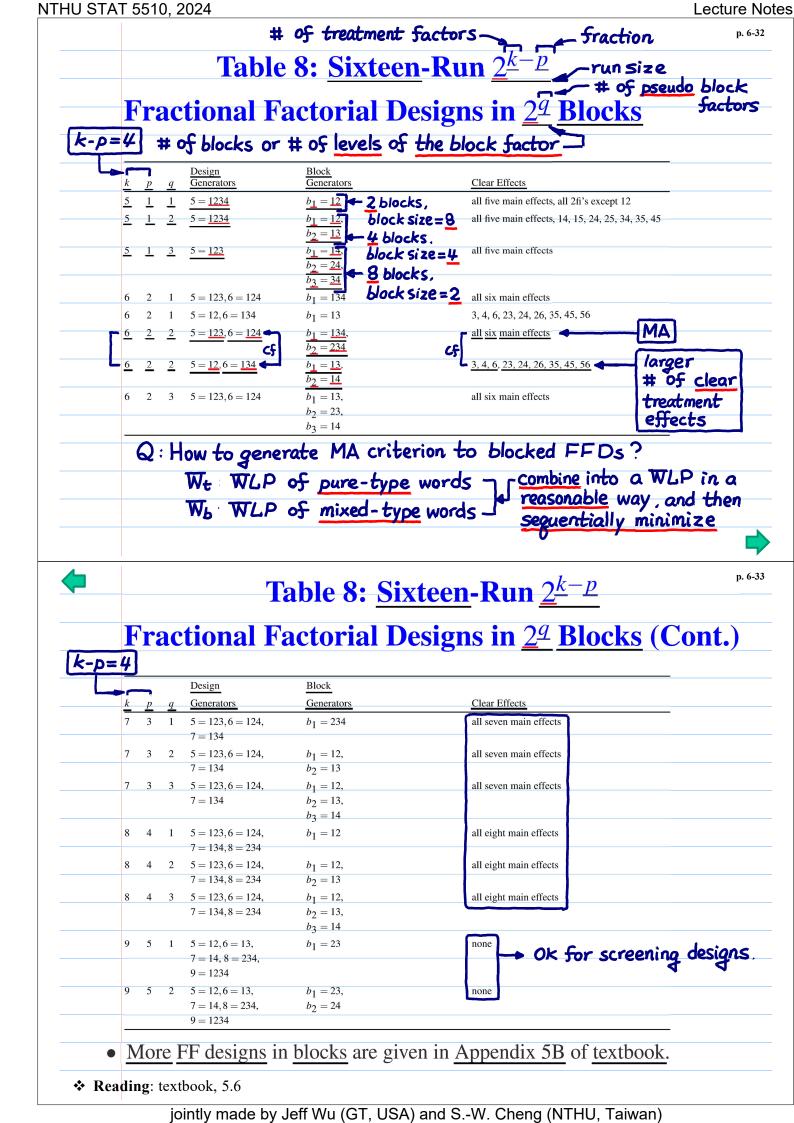
six are main effects and the rest are given above.

• Among the <u>15 degrees of freedom</u> for the <u>blocked design</u> on <u>LNp.6-30</u>, <u>3</u> are allocated for <u>block effects</u> and <u>6</u> are for <u>clear main effects</u> (see <u>Table 8</u> in <u>LNp.6-32</u>).

cannot be used for estimation. Among the remaining 12 degrees of freedom,


The remaining 6 degrees of freedom are six pairs of aliased two-factor interactions.

• For the $\underline{\underline{2^{6-2}}}$ design with $\underline{5=\underline{12}}$, $\underline{6=\underline{134}}$, if we use the block generators $\underline{b_1}=\underline{13}$,


 $b_2 = \underline{14}$, there are a total of $\underline{9}$ clear effects (see $\underline{\text{Table 8}}$ in $\underline{\text{LNp.6-32}}$):

worse aberration than 3,4,6,23,24,26,35,45,56. \blacktriangleleft (exercise) the 2⁶⁻² design in LNp.6-30

- Thus, the total <u>number</u> of <u>clear effects</u> for <u>this blocked design</u> is <u>3 more</u> than the total number of clear effects for the blocked design on <u>LNp.6-30</u>.

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

