

Why Use Fractional Factorial Designs (FFDs)?

• If a 2^{5} design is used for the experiment, its 31 degrees of freedom would be allocated as follows:

important				important			
more important		15	15 - 16		less important		
#	<u> 5</u>	(<u>5</u>)= <u>10</u>	(§)= <u>10</u>	(5)= <u>5</u>	(5)= <u>1</u>		
	<u>Effects</u>	2-Factor	3-Factor	4-Factor	5-Factor		
	Main	<u>Interactions</u>					
	Main		Intera	ctions			

- Using effect hierarchy principle, one would argue that 4fi's, 5fi and even 3fi's are not likely to be important. There are 10+5+1 = 16 (16/32 = 1/2)such effects, half of the total runs! Using a 2⁵ design can be wasteful (unless 32 runs cost about the same as 16 runs.) of $2^{5-1} = 16 \text{ runs.} \rightarrow 15 \text{ effects}$
- Use of an <u>FFD</u> instead of <u>full</u> factorial design is usually done for economic reasons. Since there is no free lunch, what price to pay? See next slide.

one of the most important concepts in DOE

* Reading: textbook, 5.1

by factors

B.C.D.Q

 $\overline{EQ} = \overline{BCDQ}, \ \overline{BCQ} = \overline{DEQ}, \ \overline{BDQ} = \overline{CEQ}, \ \overline{BEQ} = \overline{CDQ}.$ orthogonal.

