Leaf Spring Experiment

e Five factors at two levels, use a 16-run design with

three replicates for each run. It is a 2°~! design,

1/2 fraction of the 2° design.

Table 1: Factors and Levels, Leaf Spring Experiment

Factor — Level
B. high heat temperature (°F) 1840 1880
C. heating time (seconds) 23 25
D. transfer time (seconds) 10 12
E. hold down time (seconds) 2 3
Q. quench oil temperature (°F) | 130-150 150-170

e response y = free height of spring, target = 8.0 inches.

Goal : get y as close to 8.0 as possible

(nominal-the-best problem).
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@ Leaf Spring Experiment: Design Matrix and Da

Table 2:  Design Matrix and Free Height Data,
Leaf Spring Experiment
Factor

B C D E Q| FreeHeight (y) 5; 57 Ins

-+ 4 —~ — 778 778 7.81 77900 0.0003 81117
+ o+ 4 + —|815 818 7.88 80700 00273 —3.6009
- =+ + — 750 756 750 |7.5200 00012 —6.7254
+ - 4 — — 759 756 77576333 00104 —4.5627
-+ - + 7.94 800 7.88|7.9400 0.0036 —5.6268
+ 4+ - - 7.69 8.09 8.06 | 7.9467 0.0496 —3.0031
== — — | 756 7.62 74475400 00084 —4.7795
+ = - + —|756 781 7.69 | 7.6867 0.0156 —4.1583
-+ 4 — 4750 725 71272900 00373 —3.2888
+ o+ o+ + | 788 7.88 7.44|7.7333 00645 —2.7406
- - 4 + 4750 756 7.50 | 7.5200 0.0012 —6.7254
+ o=+ — 4763 775 7.56|7.6467 00092 —4.6849
- + - + o+ 732 744 744 | 74000 00048 —5.3391
+ + - — 4+ |756 7.69 7.62|7.6233 00042 54648
- - - ~ 4+ |718 7.8 7.25|7.2033 0.0016 —6.4171
+ - - + |78 750 75976333 00254 -3.6717

p. 62
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Why Use Fractional Factorial Designs (FFDs)?

e If a2’ design is used for the experiment, its 31 degrees of freedom would be
allocated as follows:

Main Interactions
Effects | 2-Factor 3-Factor 4-Factor 5-Factor
# 5 10 10 5 1

e Using effect hierarchy principle, one would argue that 41i’s, 5fi and even
3fi’s are not likely to be important. There are 10+5+1 =16 (16/32 = 1/2)
such effects, half of the total runs! Using a 2> design can be wasteful (unless
32 runs cost about the same as 16 runs.)

e Use of an FFD instead of full factorial design is usually done for economic
reasons. Since there is no free lunch , what price to pay? See next slide.

+ Reading: textbook, 5.1
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Effect Aliasing and Defining Relation

e In the design matrix, col Bx col Cx col D = col E. That means,

Y(E+) —y(E—) = ¥(BCD+) — y(BCD—).
Therefore the design is not capable of distinguishing £ from BCD. The main effect
E is aliased with the interaction BCD. Notationally,

E=BCD or 1=BCDE,

where I (= column of +’s) is the identity element

in the group of multiplications.

(Notice the mathematical similarity between aliasing
and confounding. What is the difference?)

e I = BCDE is the defining relation for the 25! design.
It implies all the 15 effect aliasing relations :
B=CDE, C=BDE, D=BCE, E =BCD,
BC =DE, BD =CE, BE =CD,
QO = BCDEQ, BQ =CDEQ, CQ =BDEQ, DQ = BCEQ,
EQ = BCDQ, BCQ =DEQ, BDQ =CEQ, BEQ = CDQ. »
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Clear Effects

e A main effect or two-factor interaction (2fi) is called clear if
it is not aliased with any other m.e.’s or 2fi’s and strongly clear
if it is not aliased with any other m.e.’s, 2fi’s or 3fi’s.
Therefore a clear effect is estimable under the assumption
of negligible 3-factor and higher-order interactions and
a strongly clear effect is estimable under the weaker assumption
of negligible 4-factor and higher-order interactions.

e In the 2°~! design with I = BCDE, which effects are clear and strongly clear?

Ans: B, C, D, E are clear, Q, BQ, CQ, DQ, EQ are strongly clear.
e Consider the alternative plan 2°~! design with I = BCDEQ.

(It is said to have resolution V because the length of

the defining word is 5 while the previous plan has
resolution IV.) It can be verified that all five main effects are
strongly clear and all 10 2i’s are clear. (Do the derivations).
This is a very good plan because each of the 15 degrees of

freedom is either clear or strongly clear.

p. 6-8

Defining Contrast Subgroup
for 2X=7 Designs

o ADQkp design has k factors, 2k=P runs, and it is a 2~ Pth fraction of the
2k design. The fraction is defined by p independent defining words.
The group formed by these p words is called the defining contrast subgroup.
It has 27 — 1 words plus the identity element 1.

e Resolution = shortest wordlength among the 27 — 1 words.

e Example: A 2672 design with 5 = 12 and 6 = 134. The two independent defining
words are I = 125 and I = 1346. Then I = 125 x 1346 = 23456. The defining
contrast subgroup = {I,125,1346,23456 }. The design has resolution III.




Deriving Aliasing Relations for the 2°~2 design

e For the same 2°~2 design, the defining contrast subgroup is

I =125 =1346 = 23456.

I = 125 = 1346 = 23456,
1 = 25 = 346 = 123456,
2 = 15 = 12346 = 3456,
3 = 1235 = 146 = 2456,
4 = 1245 = 136 = 2356,
5 = 12 = 13456 = 2346,
6 = 1256 = 134 = 2345,
13 = 235 = 46 = 12456,
4 = 245 = 36 — 12356, (1)
16 = 256 = 34 = 12345,
23 o 135 = 1246 e 456,
24 = 145 - 1236 — 356,
26 = 156 = 1234 = 345,
35 = 123 = 1456 = 240,
45 = 124 = 1356 = 236,
56 = 126 = 1345 = 234.
All the 15 degrees of freedom (each is a coset in group theory) are identified.
e It has the clear effects: 3, 4, 6, 23, 24, 26, 35, 45, 56. It has resolution III.
. p. 6-10
WordLength Pattern and Resolution
e Define A; = number of defining words of length i.
o W =(A3,A4,As,...) is called the wordlength pattern.
— In this design, W = (1, 1, 1, 0).
— Itis required that Ay =0 and A> = 0. (Why? No main effect is
allowed to be aliased with the intercept or another main effect.)
e Resolution = smallest r such that A, > 1.
e Maximum resolution criterion: For fixed £ and p,
choose a 287 design with maximum resolution.
e Rules for Resolution IV and V Designs:
(1) In any resolution I'V design, the main effects are clear.
(1) In any resolution V design, the main effects are
strongly clear and the two-factor interactions are clear. (2)

(iii)) Among the resolution I'V designs with given k and p,

those with the largest number of clear two-factor interactions are the best.
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A Projective Rationale
for Resolution

e For a resolution R design, its projection onto any R — 1 factors is a full factorial in
the R — 1 factors. This would allow effects of all orders among the R — 1 factors to

be estimable. (Caveat: it makes the assumption that other factors are inert.)

Figure 1: 237! Designs Using I = +123 and
Their Projections to 2> Designs.
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Minimum Aberration Criterion
e Motivating example: consider the two 27~ designs:
di: T = 4567 = 12346 = 12357,
dy: T = 1236 = 1457 = 234567.
— Both have resolution I'V.
- ButW(d;) =(0,1,2,0,0) and W(d>) = (0,2,0,1,0).

— Which one is better?

Intuitively one would argue that d; is better because
Ay(dy) = 1 <A4(da) =2.
(Why? Effect hierarchy principle.)

e For any two 2k—p designs d; and d», let
r = the smallest integer such that A,(d;) # A, (d>).

— d, is said to have less aberration than dy if A (dy) < A,(dy).

— If no design has less aberration than dy, then dy has minimum aberration.

e Throughout the book, this is the major criterion used for selecting fractional
Jactorial designs. Its theory is covered in the Mukherjee-Wu (2006) book.

+ Reading: textbook, 5.2
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Analysis for Location Effects

Same strategy as in full factorial experiments except for
the interpretation and handling of aliased effects.

For the location effects (based on y; values),
— the estimated factorial effects are given in Table 3 (LNp.6-14), and
— the corresponding half-normal plot in Figure 2 (LNp.6-15).
Visually one may judge that
- Q, B, C,CQ and possibly E, BQ are significant.

One can apply the studentized maximum modulus test
(see textbook, sec. 4.14, not covered in class) to
confirm that Q, B, C, CQO are significant at 0.05 level
(see textbook, p.219 and 221).

The B x Q and C x Q plots (Figure 3, LNp.6-16) show that they are synergystic.

For illustration, we use the model

y= 7.6360+0.1106xg +0.0519xg + 0.0881xc —0.1298x¢
+0.0423xBxQ — 0.0827xCxQ

3)

p. 6-14

Factorial Effects, Leaf Spring Experiment

Table 3: Factorial Effects, Leaf Spring Experiment

Effect y Ins?

B 0.221 1.891
C 0.176 0.569
D 0.029 —0.247
E 0.104 0.216
(0] —0.260 0.280
BO 0.085 —0.589
cQ —0.165 0.598
DQ 0.054 1.111
EQ 0.027 0.129
BC 0.017 —0.002
BD 0.020 0.425
CD —0.035 0.670
BCQ 0.010 —1.089
BDQ —0.040 —0.432
BEQ —0.047 0.854
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@ Half-normal Plot of Location Effects,
Leaf Spring Experiment

el
N
(=13

0.20
|

- ca

absolute effects

- BQ

. Da
- BEQ
.
« opoa
* *EQ

- BD
° BC

‘BCQ

T
0.0 0.5 1.0 1.5 2.0 2.5

half-normal quantiles

Figure 2: Half-Normal Plot of Location Effects, Leaf Spring Experiment
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@ Analysis for Dispersion Effects
e For the dispersion effects (based on z; = In S‘l?- values),
— the estimated factorial effects are given in Table 3 (LNp.6-14)
— the half-normal plot is given in Figure 4 (LNp.6-18).
e Visually only effect B stands out. This is confirmed by applying the

studentized maximum modulus test (see textbook, sec. 4.14).

e For illustration, we will include B, DQ, BCQ in the following model,
In&% = —4.9313 +0.9455x5 +0.5556xpxg — 0.5445xpxcx0. 4)

e The D x Q and B x C x Q interaction plots are given in Figures 5 and 6 (LNp.6-19).
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@ Half-normal Plot of Dispersion Effects,
Leaf Spring Experiment
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Figure 4: Half-Normal Plot of Dispersion Effects, Leaf Spring Experiment
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Interaction Plots for Dispersion Effects
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Figure 5 : D x Q Interaction Plot Figure 6 : B x C x Q Interaction Plot
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@ Two-Step Procedure for Optimization

e Step 1: To minimize s2 (or Ins?), we can

— choose B = — based on eq. (4) in LNp.6-17,

— choose the combination with the lowest value, D = +, Q = — based on the
D x Q plot (Figure 5, LNp.6-19),
— with B= — and Q = —, choose C = + to attain the minimum in the B X C x Q

mteraction plot (Figure 6, LNp.6-19).
Another confirmation: they lead to xp = —,xpxg = — and xgxcxgp = + in the model
(4), which make each of the last three terms negative.

e Step 2: With (B,C,D,Q) = (—,+,+,—), from model (3) in LNp.6-13, we have

y = 7.6360+0.1106(—1)+0.0519xg +0.0881(+1) —0.1298(—1)
+0.0423(—1)(—1) —0.0827(+1)(—1)
= 7.8683+0.0519xg.
By solving ¥ = 8.0, xg = 2.54.
Warning: This is way outside the experimental range for
factor E. Such a value may not make physical sense and the
predicted variance value for this setting may be too optimistic and not substantiated.

+ Reading: textbook, 5.3
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Techniques for Resolving Ambiguities
in Aliased Effects

e Among the three factorial effects that
feature in model (4) (LNp.6-17),
B is clear and DQ is strongly clear.

e However, the term xpxcxg is aliased
with xpxgxp (See bottom of LNp. 6-4).
The following three techniques can be
used to resolve the ambiguities.

— Subject matter knowledge may suggest some effects
in the alias set are not likely to be significant (or
does not have a good physical interpretation).

— Or use effect hierarchy principle to
assume away some higher order effects.

— Or use a follow-up experiment to de-alias these effects.
Two methods are given in section 5.4 of textbook.

p. 622

Fold-over Technique
e Suppose the original experiment is based on a 27174

design with generators

d: 4=12, 5=13, 6=23, 7=123.

None of its main effects are clear.

e To de-alias them, we can choose another 8 runs
(no. 9-16 in Table 4, LNp.6-23) with reversed
signs for each of the 7 factors. This follow-up
design d, has the generators

dy: 4 =-125=-136=-237=123.

With the extra degrees of freedom, we can introduce a
new factor 8 (or a blocking variable) for run number 1-8,
and —8 for run number 9-16. See Table 4.

e The combined design d| +d> 1s a 2%7 * design and thus all main effects are clear.
(Its defining contrast subgroup is on textbook, p.227).

N
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@ Augmented Design Matrix Using Fold-over Technique
Table 4: Augmented Design Matrix Using Fold-Over Technique

d
Run 1 2 3 4=12 5=13 6=23 7=123| 8
1 - - - + + + - +
2 - - 4+ 4 — - + 1
3 -+ - + - + +
4 -+ = = + - +
5 £ = = = — + + 1
6 + - 4+ - + - - +
7 4 - - - T
8 + + o+ 4+ + + + +
dy
Rm -1 -2 -3 -4 -5 -6 -7 -8
9 + 4+ 4 = - - + -
10 + + - - + + - -
11 +—t—+ - + - -
12 + - - 4+ + - + -
13 -+ o+ o+ + - - -
14 — - + + -
15 - - 4+ - + + + -
16 ——— = - = =

p. 624

Fold-over Technique: Version Two

e Suppose one factor, say 5, is very important.
We want to de-alias S and all 2fi’s involving 5.

e Choose, instead, the following 2;1;4 design

4 =125=-136=237=12%

Then the combined design d; +d3 is a 2;,7 3
design with the generators

d:4=12,6=237=123. (5)

Since S does not appear in (5), 5 is strongly clear
and all 2fi’s involving S are clear. However,
other main effects are not clear (see Table 5.7 in
textbook, p.228, for dy + d3).

e Choice between d, and dz depends on the priority

given to the effects.
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Critique of Fold-over Technique

e Fold-over technique is not an efficient technique.

— It requires doubling of the run size and
can only de-alias a specific set of effects.

— In practice, after analyzing the first experiment,
a set of effects will emerge and need to be de-aliased.

— It will usually require much fewer runs to de-alias a few effects.

e A more efficient technique that does not have these deficiencies is the
optimum design approach given in Section 5.4.2.

+ Reading: textbook, 5.4.1
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Use of Design Tables

e Minimum aberration (MA) designs are given in the tables in textbook, Appendix 5A.
If two designs are given for same k and p,

— the first is an MA design and
— the second is better in having a larger number of clear effects.
Two tables are given on next two slides.
e In Table 7 (LNp.6-28),
— the first 294 design has MA and 8 clear 2fi’s, and

— the second 2% design is
* the second best according to the MA criterion,
x but has 15 clear 2fi’s.

Using Rule (ii1) in (2) on LNp.6-10, the second design is better because both have
resolution IV (Details given on p. 234 of textbook).

e [t is not uncommon to find a design with slightly worse aberration but more clear
effects. Thus the number of clear effects should be used as a supplementary

criterion to the MA criterion.




Table 6: 16-Run 27 FFD (k — p = 4)

(k 1s the number of factors and F&R is the fraction and resolution.)

p. 6-27

k F&R Design Generators Clear Effects
5[ 2! 5=1234 all five main effects, all 10 2fi’s
61 952 5=123,6=124 all six main effects
6* | 28,2 5=12,6=134 3,4, 6,23, 24,26, 35, 45, 56
7 1 257 5=123,6=124,7=134 all seven main effects
2}%‘}'4 5=123,6=124,7=134,8 =234 all eight main effects
9 22 5=123,6=124,7=134,8 =234,9 = 1234 none
10 | 215°% | 5=123,6=124,7=134,8=234,9 = 1234, t, = 34 none
11| 25,7 | 5=123,6=124,7=134,8=234,9=1234,10=34,1; =24 | none
12 | 215 | 5=123,6=124,7=134,8=234,9=1234, 1, =34, 1, = | none
24,1, = 14
13 | 2057 | 5=123,6=124,7=134,8=234,9=1234, 1, =34, 1, = | none
24,1, = 14,13 =23
14 | 20710 | 5=123,6=124,7=134, 8 =234, 9 = 1234, 1o = 34, #; = | none
24.ty =14, 13 =23, 8, = 13
15 | 257" | 5=123,6=124,7 =134, 8 =234, 9= 1234, 1, =34, t; = | none
o7 IO VNP | BT L W o

Table 7: 32 Run 27 FFD (k—p=5,6 <k <11) "

(k 1s the number of factors and F&R is the fraction and resolution.)

-28

1345

F&R Design Generators Clear Effects
250 | 6=12345 all six main effects, all 15 2fi’s
2157 | 6=123,7=1245 all seven main effects, 14, 15, 17, 24, 25,
27, 34, 35, 37, 45, 46, 47, 56, 57, 67
8 | 2%° | 6=123,7=124,8=1345 all eight main effects, 15, 18, 25, 28, 35,
38, 45, 48, 56, 57, 58, 68, 78
9 | 2% | 6=123,7=124,8=125,9=1345 all nine main effects, 19, 29, 39, 49, 59,
69, 79, 89
9 | 23yt | 6=123,7=124,8=134,9=2345 all nine main effects, 15, 19, 25, 29, 35,
39, 45, 49, 56, 57, 58, 59, 69, 79, 89
101 2005 | 5123 7124, 8105 Q- 1345 {5~ 2345 all 10 main effects
10 | 2097° | 6=12,7=134,8=135,9= 145, =345 3,4,5,7,8,9, 1, 23, 24, 25, 27, 28, 29,
219, 36, 46, 56, 67, 68, 69, 619
1| 2070 | 6=123,7=124,8=134,9=125,19 = 135, 1, all 11 main effects
145
11| 2570 | 6=12,7=13,8=234,9 =235, 1 =245, 1, 4,5,8,9, 1,1, 14, 15, 18, 19, 1ty, 1,
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Choice of Fractions and Avoidance
of Specific Level Combinations

e A 2¥=P design has 27 choices.

e In general, use randomization to choose one of them.
For example, the 273 design has 8 choices

4=+12,5=413, 6 =£23.

Randomly choose the signs.

e If specific level combinations, e.g.,
(4,+,+) for high pressure, high temperature, high concentration,

are deemed undesirable or even disastrous, they can be avoided by choosing
a fraction that does not contain them. Example on p.237 of textbook.

+ Reading: textbook, 5.5
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Blocking in FF Designs
e Example: Arrange the 2672 design in
four (= 22) blocks with
I=1235 = 1246 = 3456.
e Suppose we choose

by =134, b, =234, bib, =12.

e Then
by = 134 =245 =236 = 156,
by = 234 =145=136 = 256,
bib, = 12=35=46=123456;
13 = 25 = 2346 = 1456,
14 = 26 = 2345 = 1356,
15 = 23 = 2456 = 1346,
16 = 24 = 2356 = 1345,
34 = 56 = 1245 = 1236,
36 = 45 = 1256 = 1234.

The 4 x 3 = 12 factorial effects are confounded with block effects and
cannot be used for estimation. Among the remaining 12 degrees of freedom,
six are main effects and the rest are given above. »
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. Use of Design Tables for Blocking P
e Among the 15 degrees of freedom for the blocked design on LNp.6-30, 3 are
allocated for block effects and 6 are for clear main effects (see Table 8 in LNp.6-32).
The remaining 6 degrees of freedom are six pairs of aliased two-factor interactions.
e For the 202 design with 5 = 12, 6 = 134, if we use the block generators b; = 13,
by = 14, there are a total of 9 clear effects (see Table 8 in LNp.6-32):

3,4,6,23,24,26,35,45, 56.

— Thus, the total number of clear effects for this blocked design is 3 more than the
total number of clear effects for the blocked design on LNp.6-30.

— However, only the main effects 3,4, 6 are clear.

p. 6-32

Table 8: Sixteen-Run 257
Fractional Factorial Designs in 29 Blocks

Design Block
k p g Generators Generators Clear Effects
5 1 1 5=1234 by =12 all five main effects, all 2fi’s except 12
512 5=1234 by =12, all five main effects, 14,15, 24, 25, 34, 35,45
by =13
5 1 3 5=123 by =14, all five main effects
by =24,
by =34
6 2 1 5=123,6 =124 by =134 all six main effects
6 2 1 5=12,6=134 by =13 3,4, 6,23, 24, 26, 35, 45, 56
6 2 2 5=123,6=124 by =134, all six main effects
by =234
6 2 2 5=12,6=134 b1 =13, 3,4, 6,23, 24, 26, 35, 45, 56
by =14
6 2 3 5=123,6=124 b1 =13, all six main effects
by =23,

by =14




p. 6-33

. Table 8: Sixteen-Run 257
Fractional Factorial Designs in 29 Blocks (Cont.)

Design Block

k p g  Generators Generators Clear Effects

7 3 1 5=123,6=124, by =234 all seven main effects
7=134

7 3 2 5=123,6=124, by =12, all seven main effects
7=134 by =13

7 3 3 5=123,6 =124, by =12, all seven main effects
7=134 by =13,

by =14

8 4 1 5=123,6 =124, by =12 all eight main effects
7=134,8=1234

8 4 2 5=123,6=124, by =12, all eight main effects
7=134,8 =234 by =13

8 4 3 5=123,6 =124, by =12, all eight main effects
7=134,8 =234 by =13,

by =14

9 5 1 5=12,6=13, b1 =23 none
7=14,8=234,
9=1234

9 5 2 5=12,6=13, bp =23, none
7=14,8 =234, by =24
9=1234

e More FF designs in blocks are given in Appendix 5B of textbook.

+ Reading: textbook, 5.6




