p. 5-27

Illustration with Adapted Epi-Layer Growth Experiment

- 1. In Table 4 (LNp.5-11),
 - ullet median $|\hat{\theta}_i| = 0.078$, ullet median of 15 $|\hat{\theta}_i|$ s
- closer to zero
- $\underline{s_0} = \underline{1.5} \times \underline{0.078} = \underline{0.117}$.
- trimming constant $2.5s_0 = 2.5 \times 0.117 = 0.292$, which eliminates 0.490 (D) and 0.345 (CD). \rightarrow 2 out of 15 effects
- $igotimes \underline{\operatorname{median}}_{\{|\hat{\theta}_i| < 2.5s_0\}} \underline{|\hat{\theta}_i|} = \underline{0.058} \quad \blacktriangleleft \quad \underline{\operatorname{median}} \quad \underline{13} \quad \underline{\operatorname{smaller}} \quad \underline{|\hat{\theta}_i|} = \underline{0.058} \quad \underline{\square} \quad \underline{$
 - $\underline{PSE} = \underline{1.5} \times \underline{0.058} = \underline{0.087} \iff S.e.(\hat{\theta}_i)$

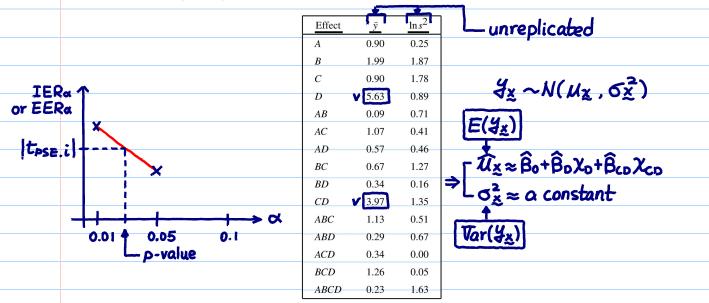
The corresponding $|t_{PSE}|$ values appear in Table 6 (LNp.5-28).

- 2. Choose $\alpha = 0.01$.
- IER_{0.01} = 3.63 for $\underline{I} = 15$. By comparing with the $|t_{PSE}|$ values, \underline{D} and \underline{CD} are significant at 0.01 level.
 - EER_{0.01} = $\underline{6.45}$ (for $\underline{I = 15}$). No effect is detected as significant.
 - Analysis of the |t_{PSE}| values for ln s² (Table 6, LNp.5-28) detects no significant effect (details on textbook, p.182), thus confirming the half-normal plot analysis in Figure 4.10 of section 4.8 (textbook, p.179).

p. 5-28

|t_{PSE}| Values for Adapted Epi-Layer Growth Experiment

Table 6: $|t_{PSE}|$ Values, Adapted Epitaxial Layer Growth Experiment



- <u>p-values</u> of effects can be obtained from <u>packages</u> or by <u>interpolating</u> the <u>critical</u> <u>values</u> in the tables in <u>appendix H</u> (<u>textbook</u>, p.701). (See <u>textbook</u>, p.182 for <u>illustration</u>).
- * Reading: textbook, 4.9

Nominal-the-Best Problem - Recall objective in LNp.5-

- There is a nominal or target value t (=14.5 in the case) based on engineering design requirements.
- Define a quantitative loss due to deviation of y_x from t.

-E(4x)+E(4x) Quadratic loss: $L(\underline{y_x},\underline{t}) = \underline{t} \cdot (\underline{y_x} - \underline{t})^2$.

 $\frac{E(L(y_{\mathbf{X}},t)) = \mathbf{1} \cdot Var(y_{\mathbf{X}}) + \mathbf{1} \cdot [E(y_{\mathbf{X}}) - t]^2}{\mathbf{1} \cdot \mathbf{variance}}.$

 $u_{\underline{x}} = E(y_{\underline{x}}) \approx X_1 \widehat{\mathbb{Q}}_1$ $\ln \sigma_{z}^{2} = \ln (\operatorname{Var}(4x)) \approx X_{2} \widehat{\beta}_{2}$ Two-step procedure for nominal-the-best problem:

- (i) Select levels of some factors to minimize $Var(y_x)$.
- (ii) Select the level of a factor not in (i) to move $E(y_x)$ closer to t.
- A factor in step (ii) is an adjustment factor if it has a factor whose effects appears in B., but not B2 a significant effect on $E(y_x)$ but not on $Var(y_x)$.
- Procedure is effective only if an adjustment factor can be found. This is often done on engineering ground.
- Examples of adjustment factors : deposition time in surface film deposition process, mold size in tile fabrication, location and spacing of markings on the dial of a weighing scale.
- If an adjustment factor does not exist, some trade-off between (i) and (ii) is required.

p. 5-30

* Reading: textbook, 4.10

Why Take $\ln s^2$? \rightarrow as a response of linear model

• It maps s^2 over $(0,\infty)$ to $\ln s^2$ over $(-\infty,\infty)$.

Regression and ANOVA assume the responses are nearly normal, i.e. over $(-\infty, \infty)$.

- Better for variance prediction.
 - Suppose $z_{\mathbf{x}} = \ln s_{\mathbf{x}}^2$.
- response approximate linear structure $S^{2} \in (0, \infty) \longrightarrow X\beta + \xi \in (-\infty, \infty)$ $\ell_{n}(S^{2}) \in (-\infty, \infty)$
 - $-\hat{z}_{\mathbf{x}}$ = predicted value of $\ln \sigma_{\mathbf{x}}^2$
 - $e^{\hat{z}_{\mathbf{x}}}$ = predicted value of $\sigma_{\mathbf{x}}^2$, always nonnegative.
- Most physical laws have a multiplicative component. Log converts *multiplicity* into *additivity*.

• Variance stabilizing property: next slide.

▶ produce"constant" error variance in the model: $\ln S_{\chi}^2 = \chi \beta + \underline{\varepsilon}$

error part of y:

 $E = E_1 \times \cdots \times E_k$

Assume independence and zero means: $Var(\mathcal{E}) = Var(\mathcal{E}_i) \times \cdots \times Var(\mathcal{E}_K) \Leftrightarrow$

may get a better approximation by linear structure XB and follow normal.

 $\rightarrow \ln(\nabla ar(\xi)) = \sum_{i=1}^{K} Q_n(\nabla ar(\xi_i))$

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

In s^2 as a Variance Stabilizing Transformation

• Assume $y_{\underline{\mathbf{x}},j} \stackrel{\underline{i.i.d.}}{\sim} N(\mu_{\underline{\mathbf{x}}}, \sigma_{\mathbf{x}}^2), \underline{j} = 1, \dots, \underline{n_{\underline{\mathbf{x}}}}$. Then,

$$(\underline{n_{\mathbf{x}}-1})\underline{s_{\mathbf{x}}^2} = \underline{\sum_{\underline{j}=1}^{\underline{n_{\mathbf{x}}}} (\underline{y_{\underline{\mathbf{x}},\underline{j}}} - \underline{\bar{y}_{\underline{\mathbf{x}}}})^2} \sim \underline{\sigma_{\mathbf{x}}^2} \, \underline{\chi_{\underline{n_{\mathbf{x}}}-1}^2}$$

$$\frac{(\underline{n_{\mathbf{x}}}-1)s_{\mathbf{x}}^{2}}{(\underline{n_{\mathbf{x}}}-1)s_{\mathbf{x}}^{2}} = \underline{\sum_{\underline{j}=1}^{n_{\mathbf{x}}}(y_{\underline{\mathbf{x}},\underline{j}}-\bar{y}_{\underline{\mathbf{x}}})^{2}} \sim \underline{\sigma_{\mathbf{x}}^{2}} \underbrace{\chi_{\underline{n_{\mathbf{x}}}-1}^{2}},$$
and a random variable $-\chi_{\underline{n_{\mathbf{x}}}-1}^{2}$

$$E(\ln S_{\underline{\mathbf{x}}}^{2}) = ? \underline{\ln \sigma_{\mathbf{x}}^{2}} + \underline{\ln \left(\chi_{\underline{n_{\mathbf{x}}}-1}^{2}/(\underline{n_{\mathbf{x}}}-1)\right)}. \quad \underline{W_{\underline{\mathbf{x}}}}$$

$$Var(\ln S_{\underline{\mathbf{x}}}^{2}) = ? \underline{\ln \sigma_{\mathbf{x}}^{2}} + \underline{\ln \left(\chi_{\underline{n_{\mathbf{x}}}-1}^{2}/(\underline{n_{\mathbf{x}}}-1)\right)}. \quad \underline{W_{\underline{\mathbf{x}}}}$$

• $W_{\mathbf{x}}$: a random variable, <u>h</u>: a smooth function, by <u>\delta</u>-method,

$$\underline{E}(\underline{h}(\underline{W_{\mathbf{x}}})) \approx \underline{h}(\underline{E}(W_{\mathbf{x}})) \text{ and } \underline{Var}(\underline{h}(W_{\mathbf{x}})) \approx [\underline{h'}(\underline{E}(W_{\mathbf{x}}))]^{\underline{2}}\underline{Var}(W_{\mathbf{x}})$$
 (4)

- Suppose $\underline{W_{\mathbf{x}}} \sim \chi_{\mathbf{v_{\mathbf{x}}}}^2/\underline{\mathbf{v_{\mathbf{x}}}}$. Then, $\underline{E(W_{\mathbf{x}})=1}$ and $\underline{\mathrm{Var}(W_{\mathbf{x}})=2/\mathbf{v_{\mathbf{x}}}}$.
- Take $h = \ln$. Applying (4) to $W_{\mathbf{x}} \left(\sim \chi_{\mathbf{v_x}}^2 / \underline{\mathbf{v_x}} \right)$ leads to

In LM.

$$E(\ln(W_{\mathbf{X}})) \approx \ln(E(W_{\mathbf{X}})) = \ln(1) = 0, \longrightarrow E(\ln S_{\mathbf{X}}^{2}) \approx \ln S_{\mathbf{X}}^{2}$$
 $E(\ln(W_{\mathbf{X}})) \approx \ln(E(W_{\mathbf{X}})) = \ln(1) = 0, \longrightarrow E(\ln S_{\mathbf{X}}^{2}) \approx \ln S_{\mathbf{X}}^{2}$
 $E(\ln(W_{\mathbf{X}})) \approx \ln(E(W_{\mathbf{X}})) = \ln(1) = 0, \longrightarrow E(\ln S_{\mathbf{X}}^{2}) \approx \ln S_{\mathbf{X}}^{2}$

In (3), $v_{\mathbf{x}} = \underline{n_{\mathbf{x}} - 1}$, we have $\underline{\ln s_{\mathbf{x}}^2} \sim \underline{N}(\underline{\ln \sigma_{\mathbf{x}}^2}, \underline{2(n_{\mathbf{x}} - 1)^{-1}})$. The variance of $\underline{\ln s_{\mathbf{x}}^2}$, i.e., $\underline{2(n_{\mathbf{x}} - 1)^{-1}}$, a constant if we have is nearly constant for $\underline{n_{\mathbf{x}} - 1} \geq 9$.

The variance of $\underline{\ln s_{\mathbf{x}}^2}$, i.e., $\underline{2(n_{\mathbf{x}} - 1)^{-1}}$, a constant if we have same # of replicates for each run.

Structure of $\underline{ln(s_{\mathbf{x}}^2)}$

* Reading: textbook, 4.11 (exercise) Compare the result with $E(S_z^2)$ and $Var(S_z^2)$

Epi-layer Growth Experiment Revisited

• Original data from Shoemaker, Tsui and Wu (1991) Conceptual model:

1-0														_
Table 2		cf	→]	Γab	le 7:]	Desig	n Mat	rix an	d Thi	cknes	s Data	a,		
(LIVP 5-		•	_				xial L				_			
24 desi	gn		-original response (6 replicates)								unreplicated			
		Do	sign		TOI IL	girical i	<u>espoi</u>	136 11	repic	uces 1				1
	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>			► Thickr	ness (y)			<u> </u>	$\frac{s^2}{s^2}$	$ln s^2$	
	-	-	_	+	14.812	14.774	14.772	14.794	14.860	14.914	14.821	0.003	-5.771	
	_	-	_	_	13.768	13.778	13.870	13.896	13.932	13.914	13.860	0.005	-5.311	
	_	_	+	+	14.722	14.736	14.774	14.778	14.682	14.850	14.757	0.003	-5.704	
	_	_	+	_	13.860	13.876	13.932	13.846	13.896	13.870	13.880	0.001	-6.984	
	-	+	_	+	14.886	14.810	14.868	14.876	14.958	14.932	14.888	0.003	-5.917	
	-	+	-	_	14.182	14.172	14.126	14.274	14.154	14.082	14.165	0.004	-5.485	
	_	+	+	+	14.758	14.784	15.054	15.058	14.938	14.936	14.921	0.016	-4.107	
	_	+	+	-	13.996	13.988	14.044	14.028	14.108	14.060	14.037	0.002	-6.237	
	+	_	_	+	15.272	14.656	14.258	14.718	15.198	15.490	14.932	0.215	-1.538	
	+	_	_	_	14.324	14.092	13.536	13.588	13.964	14.328	13.972	0.121	-2.116	
	+	_	+	+	13.918	14.044	14.926	14.962	14.504	14.136	14.415	0.206	-1.579	
	+	_	+	_	13.614	13.202	13.704	14.264	14.432	14.228	13.907	0.226	-1.487	
	+	+	_	+	14.648	14.350	14.682	15.034	15.384	15.170	14.878	0.147	-1.916	
	+	+	_	-	13.970	14.448	14.326	13.970	13.738	13.738	14.032	0.088	-2.430	
	+	+	+	+	14.184	14.402	15.544	15.424	15.036	14.470	14.843	0.327	-1.118	
	+	+	+	_	13.866	14.130	14.256	14.000	13.640	13.592	13.914	0.070	-2.653	

2 Use $Z_{\times} = \ln S_{\times}^2$ to build a variance model

 $Z_x \sim B_0 + B_A \chi_A + \cdots$ +BARZAZR+··· + BABC XAXB XC+... + BABCD XAXBXCXD $+ \underline{\mathcal{E}}$ \leftarrow constant variance

p. 5-32

① Use $Z_x = \overline{Y}_x$ to build a mean model

(Q: Why not use Zx= 4x to build a mean model?

Ans. Var(4x) not regarded constant over X)

(Q: Why Ix better than 4x?

Ans. $0 < Var(y_x) = G_x^2$ $0 < Var(\mathcal{J}_{x}) = \sigma_{x}^{2}/6$

Epi-layer Growth Experiment: Effect Estimates

Table 8: Factorial Effects, Original Epitaxial Layer Growth Experiment

		_		
	$2\beta i = \theta i \leftarrow$	Effect	<u> </u>	$\frac{\ln s^2}{\ln s^2}$
1	1.1.T. 7	A	-0.055	3.834
(<u>X</u>	<u>'x</u>) ^{-'} x ⁻ z— ^J	В	0.142	0.078
•	-[6I]	C	-0.109	0.077
		D	0.836	0.632
		AB	-0.032	-0.428
Under:	stand the meaning	AC	-0.074	0.214
	ese effect estimates,	AD	-0.025	0.002
e.g.,	•	BC	0.047	0.331
	ME(A) = -0.055	BD	0.010	0.305
	=(4.) =(4.)	CD	-0.037	0.582
	Z(A+)-Z(A-)	ABC	0.060	-0.335
	NT(A.B)=-0.032	ABD	0.067	0.086
_	1	ACD	-0.056	-0.494
Ν	IE(A B+)-ME(A B-)	BCD	0.098	0.314
	•	ABCD	0.036	0.109
	•			

Epi-layer Growth Experiment: Half-Normal Plots

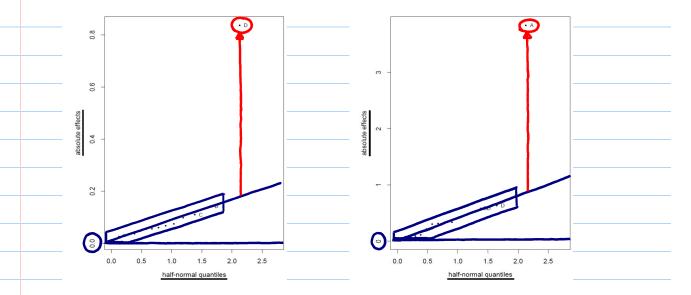


Figure 7 : Location effects (\bar{y}_x)

Figure 8 : Dispersion effects $(\ln s_{\mathbf{x}}^2)$

(exercise) Perform Lenth's method to identify significant effects

