Epitaxial Layer Growth Experiment

• An AT&T experiment based on 2⁴ design;

four treatment factors each at two levels.

There are 6 replicates for each of

the $16 (=2^4)$ level combinations;

data given on LNp.5-2.

Table 1: Factors and Levels, Adapted Epitaxial Layer Growth Experiment

Treatment Factor	– Le	vel +
A. susceptor-rotation method	continuous	oscillating
B. nozzle position	2	6
C. deposition temperature (°C)	1210	1220
D. deposition time	low	high

• **Objective :** Reduce variation of *y*

(=layer thickness) around its target

14.5 μ m by changing factor level

combinations.

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

Data from Epitaxial Layer Growth Experiment

Table 2: Design Matrix and Thickness Data,

Adapted Epitaxial Layer Growth Experiment

Run	1	A	Facto B	r C D			Thick	cness			\bar{y}	s^2	$\ln s^2$	
	T													
1			_	+	14.506	14.153	14.134	14.339	14.953	15.455	14.59	0.270	-1.309	
2		_	-		12.886	12.963	13.669	13.869	14.145	14.007	13.59	0.291	-1.234	
3	t	-	-	+ +	13.926	14.052	14.392	14.428	13.568	15.074	14.24	0.268	-1.317	
4	1	_	_	+ -	13.758	13.992	14.808	13.554	14.283	13.904	14.05	0.197	-1.625	
5		_	+	- +	14.629	13.940	14.466	14.538	15.281	15.046	14.65	0.221	-1.510	
6		-	+		14.059	13.989	13.666	14.706	13.863	13.357	13.94	0.205	-1.585	
7		-	+	+ +	13.800	13.896	14.887	14.902	14.461	14.454	14.40	0.222	-1.505	
8		_	+	+ -	13.707	13.623	14.210	14.042	14.881	14.378	14.14	0.215	-1.537	
9	+	+	_	-+-	15.050	14.361	13.916	14.431	14.968	15.294	14.67	0.269	-1.313	
10		+	_		14.249	13.900	13.065	13.143	13.708	14.255	13.72	0.272	-1.302	
11		+	-	+ +	13.327	13.457	14.368	14.405	13.932	13.552	13.84	0.220	-1.514	
12		+	_	+ -	13.605	13.190	13.695	14.259	14.428	14.223	13.90	0.229	-1.474	
13		+	+	- +	14.274	13.904	14.317	14.754	15.188	14.923	14.56	0.227	-1.483	
14		+	+		13.775	14.586	14.379	13.775	13.382	13.382	13.88	0.253	-1.374	
15	_	+	+	+ +	13.723	13.914	14.913	14.808	14.469	13.973	14.30	0.250	-1.386	
16		+	+	+ -	14.031	14.467	14.675	14.252	13.658	13.578	14.11	0.192	-1.650	

p. 5-4

2^k Designs: A General discussion

- $2 \times 2 \times ... \times 2 = 2^k$ design.
- Planning matrix vs model matrix (see Tables 4.3, 4.5, textbook, p.158 & 161).
- Run order and restricted randomization (see Table 4.4, textbook, p.160).
- *Balance*: each factor level appears the same number of times in the design matrix.
- Orthogonality: for any pair of factors,
 each possible level combination appears
 the same number of times in the design matrix.
- Replicated vs unreplicated experiment.
- ❖ Reading: textbook, 4.2

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

Main effects and Plots

• Main effect of factor A:

$$ME(A) = \bar{\mu}(A+) - \bar{\mu}(A-),$$

$$ME(A) = \bar{z}(A+) - \bar{z}(A-).$$

- Advantages of factorial designs (R.A. Fisher): reproducibility and wider inductive basis for inference.
- Informal analysis using the main effects plot can be powerful.

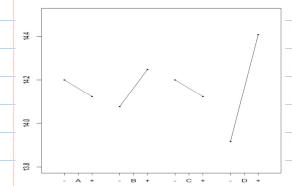


Figure 1: Main Effects Plot, Adapted Epitaxial Layer Growth Experiment

Interaction Effects

Conditional main effect of B at + level of A (or - level of A):

$$ME(B|A+) = \bar{z}(B+|A+) - \bar{z}(B-|A+).$$

$$ME(B|A-) = \bar{z}(B+|A-) - \bar{z}(B-|A-).$$

Two-factor interaction effect between *A* and *B*:

$$INT(A,B) = \frac{1}{2} \{ ME(B|A+) - ME(B|A-) \}$$

$$= \frac{1}{2} \{ ME(A|B+) - ME(A|B-) \}$$

$$= \frac{1}{2} \{ \bar{z}(A+|B+) + \bar{z}(A-|B-) \} - \frac{1}{2} \{ \bar{z}(A+|B-) + \bar{z}(A-|B+) \},$$
(1)

The first two definitions in (1) give more insight on the term "interaction" than the third one in (1). The latter is commonly used in standard texts.

NTHU STAT 5510, 2024, Lecture Notes jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

Interaction Effect Plots

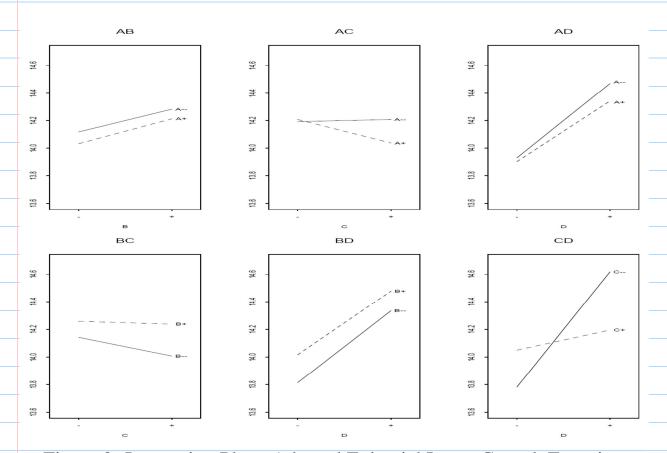


Figure 2: Interaction Plots, Adapted Epitaxial Layer Growth Experiment

Synergistic and Antagonistic Plots

• An A-against-B plot is synergystic if

$$ME(B|A+) \times ME(B|A-) > 0$$
,

and antagonistic if

$$ME(B|A+) \times ME(B|A-) < 0.$$

• An antagonistic plot suggests a more *complex* underlying relationship than what the data reveal.



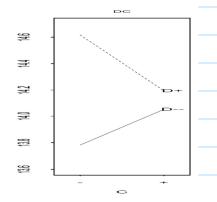


Figure 3: *C*-against-*D* and *D*-against-*C* Plots, Adapted Epitaxial Layer Growth Experiment

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

p. 5-8

More on Factorial Effects

- $INT(A,B,C) = \frac{1}{2} INT(A,B|C+) \frac{1}{2} INT(A,B|C-)$
 - $= \frac{1}{2} \operatorname{INT}(A, C|B+) \frac{1}{2} \operatorname{INT}(A, C|B-) = \frac{1}{2} \operatorname{INT}(B, C|A+) \frac{1}{2} \operatorname{INT}(B, C|A-).$
- INT (A_1, A_2, \ldots, A_k)

=
$$(1/2)$$
 INT $(A_1, A_2, ..., A_{k-1}|A_k+) - (1/2)$ INT $(A_1, A_2, ..., A_{k-1}|A_k-)$.

• A general factorial effect

$$\hat{\theta} = \bar{z}_+ - \bar{z}_-,$$

where \bar{z}_+ and \bar{z}_- are averages of one half of the

observations. If N is the total number of observations,

$$Var(\hat{\theta}) = \frac{\sigma^2}{N/2} + \frac{\sigma^2}{N/2} = \frac{4}{N}\sigma^2,$$

where σ^2 = variance of an observation.

Reading: textbook, 4.3

Using Regression Analysis to Compute Factorial Effects

- Consider the 2^3 design for factors A, B and C, whose columns are denoted by \mathbf{x}_A , \mathbf{x}_B and \mathbf{x}_C (= 1 or -1).
- The interactions AB, AC, BC, ABC are then equal to

$$\mathbf{x}_{AB} = \mathbf{x}_A \mathbf{x}_B, \ \mathbf{x}_{AC} = \mathbf{x}_A \mathbf{x}_C, \ \mathbf{x}_{BC} = \mathbf{x}_B \mathbf{x}_C, \ \mathbf{x}_{ABC} = \mathbf{x}_A \mathbf{x}_B \mathbf{x}_C$$
 (see Table 3, LNp.5-10).

• Use the regression model (i = ith observation; j = jth effect)

$$z_i = \beta_0 + \sum_{j=1}^7 \beta_j x_{ij} + \varepsilon_i,$$

• The regression (i.e., least squares) estimator of β_j is

$$\hat{\beta}_j = \frac{1}{1 - (-1)} (\bar{z}(x_{ij} = +1) - \bar{z}(x_{ij} = -1))$$

$$= \frac{1}{2} \text{ (factorial effect of variable } x_j)$$

NTHU STAT 5510, 2024, Lecture Notes

Model Matrix for 2³ Design

p. 5-10

Table 3: Design Matrix and Model Matrix for 2³ Design

A	В	C	1	\mathbf{x}_{A}	\mathbf{x}_B	\mathbf{x}_C	\mathbf{X}_{AB}	\mathbf{x}_{AC}	\mathbf{x}_{BC}	\mathbf{X}_{ABC}	Z
_	_	_	+	_	_	_	+	+	+	_	z_1
_	_	+	+	_	_	+	+	_	_	+	<i>z</i> ₂
_	+	_	+	_	+	_	_	+	_	+	<i>Z</i> 3
	+	+	+		+	+			+		<i>Z</i> 4
+	_	_	+	+	_	_	_	_	+	+	<i>Z</i> 5
+	_	+	+	+	_	+	_	+	_	_	<i>z</i> ₆
+	+	_	+	+	+	_	+	_	_	_	<i>Z</i> 7
+	+	+	+	+	+	+	+	+	+	+	<i>Z</i> 8

Factorial Effects, Adapted Epi-Layer Growth Experiment

Table 4: Factorial Effects, Adapted Epitaxial Layer Growth Experiment

F	Effect	\bar{y}	$\ln s^2$
A		-0.078	0.016
- E	?	0.173	-0.118
C	,	-0.078	-0.112
)	0.490	0.056
A	B	0.008	0.045
A	C	-0.093	-0.026
A	D	-0.050	-0.029
E	BC	0.058	0.080
	BD	-0.030	0.010
C	CD	-0.345	0.085
A	BC	0.098	-0.032
A	BD	0.025	0.042
A	CD	-0.030	0.000
E	BCD	0.110	-0.003
A	BCD	0.020	0.103

* Reading: textbook, 4.4

NTHU STAT 5510, 2024, Lecture Notes

iointly made by Jeff Wu (GT, USA) and S -W, Cheng (NTHU, Taiwan)

p. 5-12

Fundamental Principles in Factorial Design

- Effect Hierarchy Principle
 - Lower-order effects are more likely to be important than higher-order effects.
 - Effects of the same order are equally likely to be important.
- Effect Sparsity principle (Box-Meyer): The number of relatively important effects in a factorial experiment is small.
 - This is similar to the *Pareto Principle* in quality investigation.
- Effect hierarchy and sparsity principles are more effective/relevant for *screening experiments* (Why?).
- Effect Heredity Principle (Hamada-Wu): In order for an interaction to be significant, at least one of its parent factors should be significant.
 - For modeling, McCullagh and Nelder called it the *Marginality Principle*.
- **Reading**: textbook, 4.6

One-Factor-At-A-Time (ofat) Approach

Table 5: Planning Matrix for 2³ Design and Response Data For Comparison with One-Factor-At-A-Time Approach

	Factor		Percent
P	R	S	Burned
1200	0.3	slow	11
1200	0.3	fast	17
1200	0.6	slow	25
1200	0.6	fast	29
1400	0.3	slow	02
1400	0.3	fast	09
1400	0.6	slow	37
1400	0.6	fast	40

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

One-Factor-At-A-Time (ofat) Approach (Contd.)

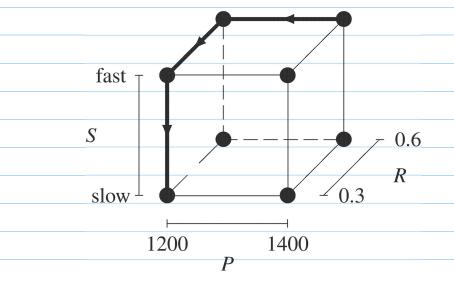
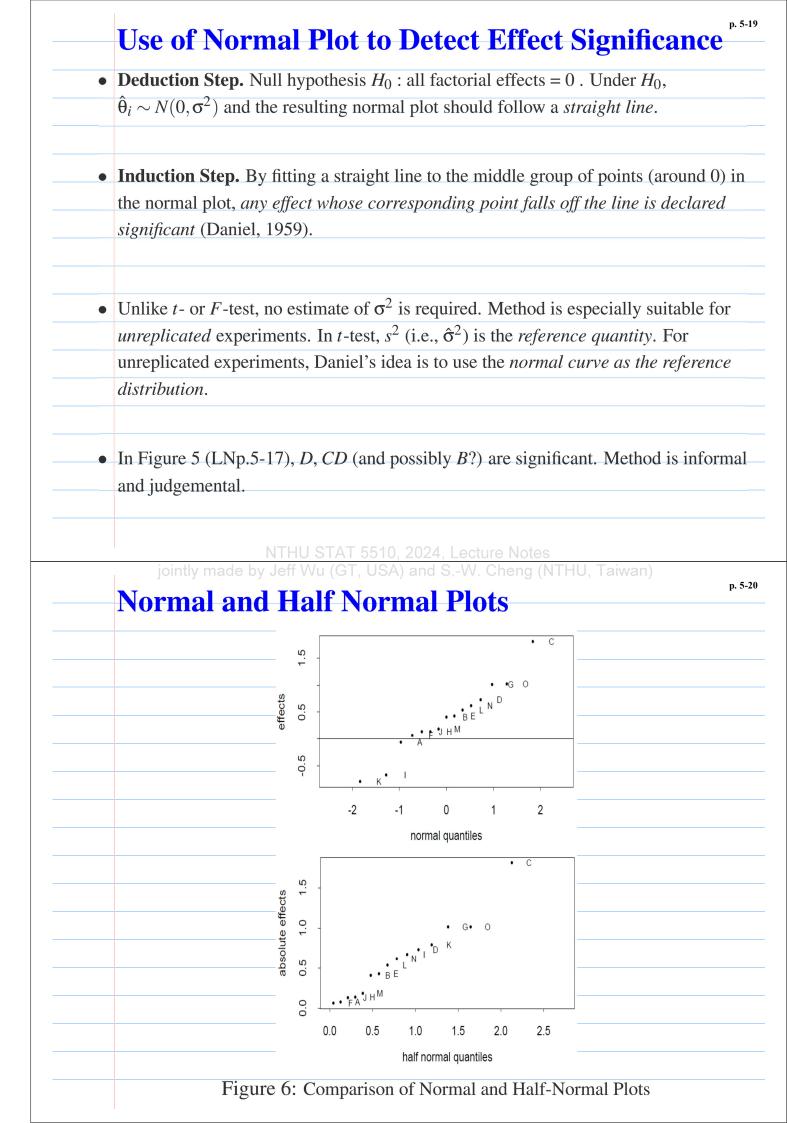


Figure 4: The Path of an ofat Plan

• The three steps of ofat as illustrated in the arrows in Figure 4 are detailed in steps 1-3 on page 174 of textbook.



declared significant. Notice that K and I no

• For the rest of the book, half-normal plots

Reading: textbook, 4.8

longer stand out in terms of the absolute values.

will be used for detecting effect significance.

JMP, or R.

A Formal Test of Effect Significance (Contd.)

2. Compute

$$t_{PSE,i} = \frac{\hat{\theta}_i}{PSE}$$
, for each *i*.

If $|t_{PSE,i}|$ exceeds the critical value given in Appendix H (textbook, p.701) or from software, $\hat{\theta}_i$ is declared significant.

• Two versions of the critical values are considered next.

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

p. 5-26

Two Versions of Lenth's Method

- Null hypothesis. H_0 : all θ_i 's = 0, normal error.
- Individual Error Rate (IER)

For $i = 1, \dots, I$, the IER α at level α is determined by

$$Prob(|t_{PSE,i}| > IER_{\alpha}|H_0) = \alpha.$$

- Note: Because $\theta_i = 0$, $t_{PSE,i}$ has the *same* distribution under H_0 for all i.
- Experiment-wise Error Rate (EER)

 $Prob(|t_{PSE,i}| > EER_{\alpha} \text{ for at least one } i, i = 1, ..., I|H_0)$

$$= Prob\left(\max_{1 \le i \le I} |t_{PSE,i}| > \text{EER}_{\alpha} \middle| H_0\right) = \alpha.$$

- $EER_{\alpha} > IER_{\alpha}$.
- EER accounts for the number of tests done in the experiment but often gives conservative results (less powerful). In screening experiments, IER is more powerful and preferable because many of the θ_i 's are negligible (recall the effect sparsity principle). The EER critical values can be inflated by considering many θ_i values. (Why?)

Illustration with Adapted Epi-Layer Growth Experiment

- 1. In Table 4 (LNp.5-11),
 - median $|\hat{\theta}_i| = 0.078$,
 - $s_0 = 1.5 \times 0.078 = 0.117$.
 - trimming constant $2.5s_0 = 2.5 \times 0.117 = 0.292$, which eliminates 0.490 (*D*) and 0.345 (*CD*).
 - $\operatorname{median}_{\{|\hat{\theta}_i| < 2.5s_0\}} |\hat{\theta}_i| = 0.058$
 - $PSE = 1.5 \times 0.058 = 0.087$

The corresponding $|t_{PSE}|$ values appear in Table 6 (LNp.5-28).

- 2. Choose $\alpha = 0.01$.
 - IER_{0.01} = 3.63 for I = 15. By comparing with the $|t_{PSE}|$ values, D and CD are significant at 0.01 level.
 - $EER_{0.01} = 6.45$ (for I = 15). No effect is detected as significant.
- Analysis of the $|t_{PSE}|$ values for $\ln s^2$ (Table 6, LNp.5-28) detects no significant effect (details on textbook, p.182), thus confirming the half-normal plot analysis in Figure 4.10 of section 4.8 (textbook, p.179).

NTHU STAT 5510, 2024, Lecture Notes jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

n. 5-28

|t_{PSE}| Values for Adapted Epi-Layer Growth Experiment

Table 6: $|t_{PSE}|$ Values, Adapted Epitaxial Layer Growth Experiment

Effect	ÿ	$\ln s^2$
A	0.90	0.25
В	1.99	1.87
C	0.90	1.78
D	5.63	0.89
AB	0.09	0.71
AC	1.07	0.41
-AD	0.57	0.46
BC	0.67	1.27
BD	0.34	0.16
CD	3.97	1.35
ABC	1.13	0.51
ABD	0.29	0.67
ACD	0.34	0.00
BCD	1.26	0.05
-ABCD	0.23	1.63

- p-values of effects can be obtained from packages or by interpolating the critical values in the tables in appendix H (textbook, p.701). (See textbook, p.182 for illustration).
- ❖ Reading: textbook, 4.9

p. 5-30

Nominal-the-Best Problem

- There is a nominal or target value t (=14.5 in the case) based on engineering design requirements.
- Define a quantitative loss due to deviation of y_x from t.

Quadratic loss: $L(y_x,t) = c \cdot (y_x - t)^2$.

$$E(L(y_{\mathbf{x}},t)) = c \cdot Var(y_{\mathbf{x}}) + c \cdot [E(y_{\mathbf{x}}) - t]^{2}.$$

- Two-step procedure for nominal-the-best problem:
 - (i) Select levels of some factors to minimize $Var(y_x)$.
 - (ii) Select the level of a factor not in (i) to move $E(y_x)$ closer to t.
 - A factor in step (ii) is an ad justment factor if it has a significant effect on $E(y_x)$ but not on $Var(y_x)$.
 - Procedure is effective only if an adjustment factor can be found. This is often done on engineering ground.
 - Examples of adjustment factors : deposition time in surface film deposition process, mold size in tile fabrication, location and spacing of markings on the dial of a weighing scale.
- * Reading: textbook, 4.10

NTHU STAT 5510, 2024, Lecture Notes jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

Why Take $\ln s^2$?

- It maps s^2 over $(0,\infty)$ to $\ln s^2$ over $(-\infty,\infty)$. Regression and ANOVA assume the responses are nearly normal, i.e. over $(-\infty, \infty)$.
- Better for variance prediction.
 - Suppose $z_{\mathbf{x}} = \ln s_{\mathbf{x}}^2$.
 - $-\hat{z}_{x}$ = predicted value of $\ln \sigma_{x}^{2}$
 - $e^{\hat{z}_x}$ = predicted value of σ_x^2 , always nonnegative.
- Most physical laws have a multiplicative component.

Log converts multiplicity into additivity.

• Variance stabilizing property: next slide.

$\ln s^2$ as a Variance Stabilizing Transformation

• Assume $y_{\mathbf{x},j} \stackrel{i.i.d.}{\sim} N(\mu_{\mathbf{x}}, \sigma_{\mathbf{x}}^2), j = 1, \dots, n_{\mathbf{x}}$. Then,

$$(n_{\mathbf{x}}-1)s_{\mathbf{x}}^2 = \sum_{j=1}^{n_{\mathbf{x}}} (y_{\mathbf{x},j}-\bar{y}_{\mathbf{x}})^2 \sim \sigma_{\mathbf{x}}^2 \chi_{n_{\mathbf{x}}-1}^2,$$

and

$$\ln s_{\mathbf{x}}^2 = \ln \sigma_{\mathbf{x}}^2 + \ln \left(\chi_{n_{\mathbf{x}}-1}^2 / (n_{\mathbf{x}} - 1) \right). \tag{3}$$

• $W_{\mathbf{x}}$: a random variable, h: a smooth function, by δ -method,

$$E(h(W_{\mathbf{x}})) \approx h(E(W_{\mathbf{x}}))$$
 and $Var(h(W_{\mathbf{x}})) \approx [h'(E(W_{\mathbf{x}}))]^2 Var(W_{\mathbf{x}})$ (4)

- Suppose $W_{\mathbf{x}} \sim \chi_{\mathbf{v}_{\mathbf{x}}}^2/\nu_{\mathbf{x}}$. Then, $E(W_{\mathbf{x}}) = 1$ and $Var(W_{\mathbf{x}}) = 2/\nu_{\mathbf{x}}$.
- Take $h = \text{ln. Applying (4) to } W_{\mathbf{x}} \left(\sim \chi_{\mathbf{v_x}}^2 / \mathbf{v_x} \right)$ leads to

$$E(\ln(W_{\mathbf{x}})) \approx \ln(E(W_{\mathbf{x}})) = \ln(1) = 0,$$

$$Var(ln(W_{\mathbf{x}})) \approx [h'(1)]^2 (2/v_{\mathbf{x}}) = 2/v_{\mathbf{x}}.$$

- In (3), $v_{\mathbf{x}} = n_{\mathbf{x}} 1$, we have $\ln s_{\mathbf{x}}^2 \sim N(\ln \sigma_{\mathbf{x}}^2, 2(n_{\mathbf{x}} 1)^{-1})$. The variance of $\ln s_{\mathbf{x}}^2$, i.e., $2(n_{\mathbf{x}} - 1)^{-1}$, is nearly constant for $n_{\mathbf{x}} - 1 \ge 9$.
- ❖ Reading: textbook, 4.11

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

p. 5-32

Epi-layer Growth Experiment Revisited

• Original data from Shoemaker, Tsui and Wu (1991).

Table 7: Design Matrix and Thickness Data, Original Epitaxial Layer Growth Experiment

	Des	sign										
A	В	C	D			Thickn	iess (y)			\bar{y}	s^2	$\ln s^2$
-	_	-	+	14.812	14.774	14.772	14.794	14.860	14.914	14.821	0.003	-5.771
_	_	_	_	13.768	13.778	13.870	13.896	13.932	13.914	13.860	0.005	-5.311
-	_	+	+	14.722	14.736	14.774	14.778	14.682	14.850	14.757	0.003	-5.704
_	_	+	_	13.860	13.876	13.932	13.846	13.896	13.870	13.880	0.001	-6.984
_	+	_	+	14.886	14.810	14.868	14.876	14.958	14.932	14.888	0.003	-5.917
_	+	-	_	14.182	14.172	14.126	14.274	14.154	14.082	14.165	0.004	-5.485
_	+	+	+	14.758	14.784	15.054	15.058	14.938	14.936	14.921	0.016	-4.107
-	+	+	-	13.996	13.988	14.044	14.028	14.108	14.060	14.037	0.002	-6.237
+	_	-	+	15.272	14.656	14.258	14.718	15.198	15.490	14.932	0.215	-1.538
+	_	_	-	14.324	14.092	13.536	13.588	13.964	14.328	13.972	0.121	-2.116
+	_	+	+	13.918	14.044	14.926	14.962	14.504	14.136	14.415	0.206	-1.579
+	_	+	-	13.614	13.202	13.704	14.264	14.432	14.228	13.907	0.226	-1.487
+	+	-	+	14.648	14.350	14.682	15.034	15.384	15.170	14.878	0.147	-1.916
+	+	-	_	13.970	14.448	14.326	13.970	13.738	13.738	14.032	0.088	-2.430
+	+	+	+	14.184	14.402	15.544	15.424	15.036	14.470	14.843	0.327	-1.118
+	+	+	_	13.866	14.130	14.256	14.000	13.640	13.592	13.914	0.070	-2.653

Epi-layer Growth Experiment: Effect Estimates

Table 8: Factorial Effects, Original Epitaxial Layer Growth Experiment

Effect	\bar{y}	$\ln s^2$
A	-0.055	3.834
В	0.142	0.078
C	-0.109	0.077
D	0.836	0.632
AB	-0.032	-0.428
AC	-0.074	0.214
AD	-0.025	0.002
BC	0.047	0.331
BD	0.010	0.305
-CD	-0.037	0.582
ABC	0.060	-0.335
ABD	0.067	0.086
ACD	-0.056	-0.494
BCD	0.098	0.314
ABCD	0.036	0.109

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

Epi-layer Growth Experiment: Half-Normal Plots

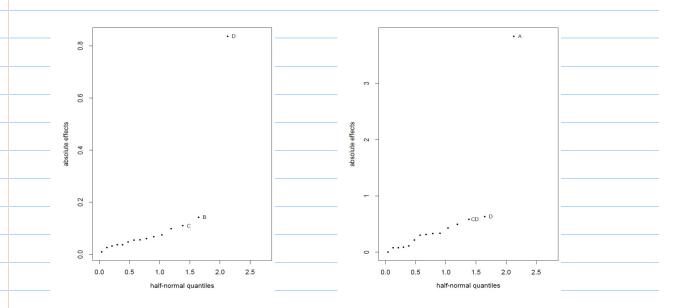


Figure 7: Location effects (\bar{y}_x)

Figure 8 : Dispersion effects $(\ln s_{\mathbf{x}}^2)$

Epi-layer Growth Experiment: Analysis and Optimization

• From the two plots, ME D is significant for $z = \bar{y}$ and ME *A* is significant for $z = \ln s^2$. Fitted models :

$$\hat{y}_{\mathbf{x}} = \hat{\beta}_0 + \hat{\beta}_D x_D = 14.389 + 0.418 x_D,$$

$$\ln \hat{s}_{\mathbf{x}}^2 = \hat{\gamma}_0 + \hat{\gamma}_A x_A = -3.772 + 1.917 x_A.$$

- Factor *D* is an adjustment factor.
- All the effects related to factors B and C do not appear in the fitted models.
- Two-step procedure:
 - (i) Choose A at level (continuous rotation).
 - (ii) Choose $x_D = 0.266$ to satisfy $14.5 = 14.389 + 0.418x_D$. (If D = 30 and 40 sec for $x_D = -1$ and +1, $x_D = 0.266$ corresponds to 35 + 0.266(5) = 36.33 sec.)
- Predicted variance

$$\hat{\sigma}^2 = \exp[-3.772 + 1.917(-1)] = (0.058)^2.$$

This is too optimistic! Predicted values should

be validated with a confirmation experiment.

(Note. $s_{\mathbf{x}}^2$ estimates subplot error variance)

* Reading: textbook, 4.12

NTHU STAT 5510, 2024, Lecture Notes jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

p. 5-36

- 2^k Designs in 2^q Blocks
- Example: Arranging a 2³ design in 2 blocks (of size 4). Use the 123 column in Table 9 (LNp.5-37) to define the blocking scheme:

block I if 123 = -, and block II if 123 = +.

The block effect estimate $\bar{y}(II) - \bar{y}(I)$ is identical to the estimate of the 123 interaction $\bar{y}(123 = +) - \bar{y}(123 = -)$.

The block effect b and the interaction 123 are called

confounded. Notationally,

$$b = 123.$$

- By giving up the ability to estimate 123, this blocking scheme increases the precision in the estimates of main effects and 2fi's by arranging 8 runs in two homogeneous blocks.
- Why sacrificing 123?

ans: Effect hierarchy principle.

Arrangement of 2³ Design in 2 Blocks

Table 9: Arranging a 2³ Design in Two Blocks of Size Four (The 3 factors are denoted by 1, 2, and 3)

Run	I	1	2	3	12	13	23	123	Block
1	+	_	_	_	+	+	+		I
2	+		_	+	+	_	_	+	II
3	+		+	_		+		+	II
4	+		+	+	_		+	_	I
5	+	+		_	_	_	+	_+_	II
6	+	+		+	_	+			I
7		+	+	_	+	_	_	_	I
8	+	+	+	+	+	+	+	+	II

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

A 2³ Design in 4 Blocks

• Similarly we can use $b_1 = 12$ and $b_2 = 13$ to define two independent blocking variables.

The 4 blocks I, II, III and IV are defined by

$$b_1 = \pm \text{ and } b_2 = \pm :$$

	b_1							
b_2		+						
	I	III						
+	II	IV						

• A 2³ design in 4 blocks is given in Table 10

(LNp.5-39). Confounding relationships:

$$b_1 = 12, b_2 = 13, b_1b_2 = 12 \times 13 = 23.$$

Thus 12, 13 and 23 are confounded with

block effects and thus sacrificed.

p. 5-38

Arranging a 2³ Design in 4 Blocks

Table 10: Arranging a 2³ Design in Four Blocks of Size Two

					b_1	b_2	$b_{1}b_{2}$		
Run	I	1	2	3	12	13	23	123	block
1	+	_	_	_	+	+	+	_	IV
2	+	_	_	+	+	_	_	+	III
3	+	_	+	_	_	+	_	+	II
4	+	_	+	+	_	_	+	_	I
5	+	+	_	_	_	_	+	+	I
6	+	+	_	+	_	+	_	_	II
7	+	+	+	_	+	_	_	_	III
8	+	+	+	+	+	+	+	+	IV

• $\{I, 12, 13, 23\}$ forms the block defining contrast subgroup for the 2^3 design in 4 blocks. For a more complicated example (2^5 design in 8 blocks), see textbook, p.196.

NTHU STAT 5510, 2024, Lecture Notes

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

p. 5-40

Minimum Aberration Blocking Scheme

- For any blocking scheme *B* and $1 \le i \le k$, let
 - $g_i(B)$ = number of *i*-factor effects that are confounded with block effects.
 - Must require $g_1(B) = 0$ (because no main effect should be confounded with block effects).
- For any two blocking schemes B_1 and B_2 , let

 $r = \text{smallest } i \text{ such that } g_i(B_1) \neq g_i(B_2).$

- If $g_r(B_1) < g_r(B_2)$, scheme B_1 is said to have *less aberration* than scheme B_2 .
- A blocking scheme *B* has *minimum aberration* (MA) if no other blocking schemes have less aberration than *B*.
- The minimum aberration criterion is justified by the effect hierarchy principle.
- Minimum aberration blocking schemes are given in Table 4A.1 (textbook, p.207).
- Theory is developed under the assumption of no $block \times treatment$ interactions.
- **❖ Reading**: textbook, 4.15