NTHU STAT 5510, 2024

Lecture Notes

LM, L 3-1~2 - Residual Analysis: Theory

p.322

e Theory: define the residual for the i observation (x;,y;) as

Al N - N
Ei=ri=yi—Ji, Yi=x/B, rtthmwﬁmodel matrix X

Yi contains information given by the model, r; is the

“difference” between y; (observed) and y; (fitted)
and contains information on possible model inadequacy.

e Vector of residuals r = (r1,...,rv)T =y

~ XB.o{1- HY

e Under the model assumption E(y) = Xp, it can be shown that

(@) E(r)=0, [*XLY Lie,XB is correct model

E: often used to
check assumptions:

D Eis48N(0.6)
@L(Y)= é__B_ls

a correct mean
structure

Ehat matrix E overall

pattern

individual

(b) r and y are independent,

observation

oc|-hi (leverage) = | - H;;
—=(c) variances of r; are nearly constant |“o<Mahananobis dist.

C.ovg L) for “nearly balanced” designs. | btwn designpts & X
=62(1-H) X ¥
DyY=XB+¢-= I} +& f

r’—; -
@Y-x,5 t X Bt Ex ? X8+ HX,B,)H(U=H )X,B,+ £) = Yy+éx)
....UndeY' §lH:ed model Y Xlg +£ (H|=XI<,XIXI) XI)

g <> Mo Residual Plots+—{LM, LNp.7-2~9| "™
e Plot r; vs. §; (see Figure 1): It should appear as a parallel band around 0.
— w=LNp

Otherwise, it would suggest model violation. If spread of r; increases as J;

increases, error variance of y increases with mean of y. May need a

transformation of y. (Will be explained in future lecture.)
fLAIp.Z':'
Plot r; from replicates per treatment (see Figure 2): to see

uali -

N
s I vs.

tative] 1f €rror variance depends on treatment, Note. saturaded mode!l predictor

Factor e Box plots

_—® Plot r; vs. x;: If not a parallel band around 0, relationship between «—

taé[cfe- y; and x; not fully captured, revise the X3 part of the model.

factor
® Plot ri Vs. time sequence;tko see if there 1sa i$ available Cor run order,
time trend or autocorrelation over time. measure order, +++)

null - | m
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<:| p.3-24
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Figure 1: r; vs. ¥;, Pulp Experiment
LLNp.I

Plot of r; vs. treatment

fitbed model
. Saturated
T
Same U groups “1 x A 1 Yal
of residuals as 3 2 €;3=0
tn the residual | 5 : * XX % e 2 N
plot of- re vs. < —A— o forany ¢
g: (Lhp3-24) . X ot : .
% v l, g. o °
no need to x ¥ : |
check the 1 xx¥ 5 g
trend in the i s B . X=||3
mean of~ cpmr 3.
rescduals | H
Figure 2: r; vs. treatment, Pulp Experiment s i |

| T -
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Yi, oo, Ya lid ~cdf E _—Box-(Whisker) Plot
e A powerful graphical display (due to Tukey) to capture the location,

dispersion, skewness and extremity of a distribution. See Figure 3.
ELNp,2'7

e (1 = lower quartile (25% quantile), O3 = upper quartile (75% quantile),

(0, = median (50% quantile, estimate of location parameter) is the white

line in the box. Q1 and Q3 are boundaries of the black box.

e /OR =interquartile range (length of box) = O3 — Q1: measure of dispersion.

e Minimum and maximum of observed values within

Q1 — L5 x IQR, Q3+ L5 % IQR

are denoted by two whiskers. Any values outside the whiskers are regarded

as extreme values and displayed (possible outliers).

e If O; and Q3 are not symmetric around Q3
the median, it indicates skewness. — Q2 Q
| '
e Side-by-side box plots (LNp. 3-2~3) are useful to compare the difference
between the distributions of several groups of data. E>
Box-(Whisker) Plot
< extreme value
I 1<—usually maximum I51QR
i 25%
b §257 QT
- las% &
: 15IQR
' e usually minimum

-20

} extreme values

Figure 3: Box-Whisker Plot
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p. 328

Normal Probability Plot< Q-Q plot (LM, LNp.3-15~16)

iOriginal purpose : To test if a distribution is normal, e.g., if the residuals

-
follow a normal distribution (see Figure 5). [Q.wh : —
can be used to tden‘f:qu Ouél:er—m Q y need | normahTy gr erro

?_l\ilore powerful use in factorial experiments (dlscussed in Units 5 and 6).

used to ¢deml:c.-j: significant effects Bi's «Es replace t-tests
o Let ra) < Lo s r(N) be the ordered residuals. The cumulative  , _

probability for Lo is Pi= (i—0.5)/N. Thus the plolt_’?f 9 eﬂgg'rical cdf -

2
Di vs. 1(;) should be S-s -shaped as in Figure 4(a) if the errors 2 .=

)
are normal. By transforming the scale of the horizontal axis, o "':)"75

pe—
L] L

the S-shaped curve is straightened to be a line (see Figure 4(b)). fn fta- Ten-n fom
£ (Np29

e Normal probability plot of residuals :

(CID_l (L_O_'S),rgl), i=1,....N, & =normal cdf.
N =

If the errors are normal, it should plot roughly as a straight line. See

Figure 5.
% LNp.30 E>

<:| p.3-29
Regular and Normal Probability Plots of Normal

= |§:cdf of CDF A ()
N(0.1) emplﬂca.l iy Y=x
Cd‘f‘Q‘F Ec 1.04 Q‘

T
2

@"(t“"‘f)_jLS(n
Figure 4: Normal Plot of r;, Pulp Experiment
Z,---,2x5 (id ~ N(U,c?)
(=S Wi U< WL —(Z.. -M)fs iid ~ N(o,2) ——F ]

Normal probability plot of Wi’s = Wiy vs. @.. # X
Normal probability plot of Zi's = Ziyvs. ® ¢ Y=0x+u

2>
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<:| p. 3-30
Normal Probability Plot : Pulp Experiment

E overall pattern
3 —slope : 6
intercept : u
&) ¢
. Individual
°7 . observations

) ) ot (%) ‘2

normal quantiles

Figure 5: Normal Plot of r;, Pulp Experiment

+ Reading: textbook, 2.6

. 3-31
@: Are A.B.C.D| population
TR Pulp Experiment Revisited o rereseniiie| < <A
o Compare the 2 scenarios 5“"'?,'3 t_‘ff f’}f @* ¥
Lhp.4 (S1) plant has only 4 operators (or popilation ;1 o>€ B
effects of | only interested in these 4 operators)
operators | —
prT— T;’s: parameters (unknown fixed values) é
oompling — — interest: difference btwn the 4 specific T;’s gg L
EF] (S2) 4 operators randomly sampled from a é
g’ﬁ;rne large population of operators T @ Y O B
23 -+ T;’s: random variables o cA

ui=E(%id)-< interest: difference btwn all operators in this population

e In the pulp experiment the effects t; are called fixed effects because the

-
interest was in comparing the four specific operators in the study. If these

four operators were chosen randomly from the population of operators in

the plant, the interest would usually be in the variation among all operators

in the population. Because the observed data are from operators randomly

selected from the population, the variation among operators in the
population is referred to as random effects. |condikioned on these & operators _J‘>
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<ZI Fixed effect model »**
e One-way random effects model (REM < FEM)
intercept, pammehr whole- & sub-plot errors in LNp 4-47~48
FEMin | cF r‘—_'——u subP

LNp3-423-8[> i — 1 Sp ——* Y4:i~N(7,0¢+5%)
V.
where €;;’s:  independent error terms with N(0,62), Q: gia' S indep.?
T;’s:  independent N(0,62), REM:
— _ Why=—=F— parameters
and T; and €;; are independent (Why? Give an example.); N, 63, 62

G=2 and G_% are the two variance components of the model. [check =7

The variance among operators in the population is measured by G_% :

| REME(v)=12 FEM Y;j inde. N(n+ti,o?)
9._" (2) cov(Yu, ﬂn) COV(’[+'C|+E|| 'l""l'.'-'l'&z) (NE(Y)=XB +-1+Ti
i =oc =G
T, cov(Yn, 4a1)=cov( 7+'C:+Eu,'l+'£'z+8zz) (2) cov(¥) gil:‘
Y= ’Ezn =0 1 lotg  <a # relationshjp btwn,
| =S S ey
i n_ - faxha - 1_; -InFEM., E(Y)
den, = 19 T - [I\’l_]+62[2 1] - LnREM, Cov(¥)
T ' - o

p.3-33

check

In the following, assume n; = --- = ng = n. N('ZA I“) ~Y

% The null hypothesis for the FEM:

i‘;"lnle ‘ _‘.h - bH() : ’511 :db =1 %j%o%: ,
dist. | Should be E&ez Y | meaning?|| & < nto (0]
Y~N(2lL,621) | H; : 65 = 0. ’_| NOW, N* 7

Under i{; , the F'-test and the
ANOVA table in LNp. 3-6 still holds.

e Reason: under HS, E(PoY)=Po10 n;'- _n_ d%eul: eigenspace 05: ¥
(unde(ir Ho) SSTr ~ G’ x LEPY) - cz no’us: : eigenvalue ‘ﬁ{:‘é?,:‘,‘,f,f,’i’.’s
(e HEERS) SSE ~ 5P |2 ST P E G- T uth2:5)
SSTr | and they are indepenmlt.kfo) = Z(J" di--fn # ) ";(M""G )/-("-'”l
;S; Therefore the F-test has the =1 A (1+Ti "’j:cl“ HON@@T 06t +67)
N-k |distribution Fi_y y_4 under H Hy. §.= 5. ;_%

S |PY]"2 zmé -5)
COV(P]Y,P:Y)= P,Cou(Y)P: SE "_JL zz(ﬂ‘a g;')

=P12*P3T=Q LY"J 2+tu+£‘a = z(eta El. ~6/ZN"
columns of P, & Pa are eigenvectors of b gl A BR=0 ~ 6 X (n-.)I
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ANOVA Tables (1, = n) "~

e We can apply the same ANOVA and F-test in the fixed effects case for

- fEsame test statistic . £|E (MS) in]
analyzing data. same nall dist different <5 7 Np.3-‘6 |
Source  df. SS  MS E(MS):—'H Under Ho UHA
ANOVA c§ __ SSTr 2 2 d %*
toble (FEM)J( y treatment k—1  SSTr  MSTr= 325 || 6~ +nc;<a- Un ear Ho,
in LNp3-6 residual N—k SSE  MSE— $5E o2 Gc'=0
E(IWS"';'):Sz
total N—1

Pulp Experiment
Source d.f. SS MS E(MS)

':‘e’:ffz'?pem) 6 | treatment 3 134 0447 | 6?+502
in LNp.3-F residual 16 170  0.106 c’

total 19 3.04

e However, we need to compute the expected mean squares under the

alternative of 62 > 0,

(1) for sample size determination, and
(i) to estimate the variance components. (§¢ & 62)

p. 3-35

Expected Mean Squares for Treatments

SSE/\.x : an unbiased
estimator of G2

e Equation (1) holds independent of 62,

(Np3-33) STms~__
_ SSE N\ o SSE only contains
E(MSE) _E<N—k> - [mﬁarmaﬁon of a)

error var. component G
e Under the alternative: 62 > (), and for n; = n, SST- _SSE_
(LNPB-BB) (nst + Ga)}k 1 gg E( K-l - -K ) 6‘5
( STr 2 l n |
E(MSTr)=E = o2 + no? ——

‘—til- ortimaon of 62
e For unequal n;’s, n in (2) is replaced by SSTr contains informakion

@

about $actor var component Gt
- 1 { ‘ . Z?ﬂ%_} ' error var. com’;nerrl: c*
—A k=15 Yhim (c§ E(SST+) of FEM
in LNp 3-6)
exercise) use (o) ir LNp.3-33

>
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<:I Z i ld Z-L—‘%
= . N ,“_‘ N u 9
Yj=1+Te + €2 &3 Proof of (2) 'n K — (
1+Ti+ Eiq r’l+'c.+€ 2 (zi-7) 2
yz )’.. = (TZ_T.) + (éi-—é.) ez "'}_Is;l_
Lp35 3 ¢ : > L (2:-2 ~ 671
SSTr = ZE()@'. —y‘_.)“ -

The cross product term has mean O (because T and € are independent). It can be
2y 2 a2
shown that r.~6 2 Xk-l P~ 64

E(Y (-2 — (k- and E f(a.—s.)g)zm.
= g o Sy
)

a g‘.'
Therefore N(0-G2 average of Ti's N(0. O%) average of Ei.%s
E(SSTr) = nlk_1)o2+ (k=1)0> «E> Ta FEM (Np.3-6)
. =
EMSTr) = E (SST”> — 6% +na?. E(SsTr)= n'};(r..-t
A=l + (k-1)62*

N

p. 3-37

@ Variance components: estimation of o2 and G
e From equations (1) and (2) in LNp. 3-35, we obtain the followmg unblased

estimates of the variance components: fam this be almys 207
=2 . ‘MSTr— MSE"
?MFOM '—’(5_2: MSE and (52 = MST:
Ll -1 - _check Np3-35 A«ss
Note that 62 > 0 if and only if MSTr > M SE, which is equivalent to F >1
Therefore a negative variance estimate 6 _'c_ occurs only if the value of the

statistic is less than 1. Obviously the null hypothesis Hy is not rejected when

E(F;" m| < 1. Since variance cannot be negatlve a negative variance estimate is
’h 2

replaced by 0. This does not mean that 6 is zero. It simply means that there

- - u
g'f'o 1s not enough information in the data to ge get a good estimate of G2. ﬁ’: accept
t=

e For the pulp experiment, n = 5, 6* = 0.106, 62 = (0.447 —0.106) /5 = 0.068,
1.e., sheet-to-sheet variance (within same operator) is 0.106, which is about

50% higher thancg%)e‘fator—to—operator variance 0.068. a property of
Implications on process improvement: try to reduce ;ﬁepfﬁ'},r,;m

the two sources of variation, also considering costs.
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grap hLEstlmatlon of Overall Mean 1 < the only fixed effect in REM

in Wp3-3
e In REM, 1, the population mean, is often of interest. the intercept parameter
F E th timat f in FEM is USUA"y of
rom (ylj) 1, we use the estimate No inberest

same as the =—

Bin FEM under sum coding, but

7 'l+‘r.+e ~N(’Z Sk +%) E—E(MSTr) ==
. A -
3uantih[ For n; = n, Var(f)) = 6‘ 1 9 nk (G +nc5 se.()= nk%

Using (2) in LNp.3-35, —5— is an unbiased estimate of Var(1 )—T
Confidence interval for n 4. and MSTr are indep-(Wp33)| g c Ty o (62_'_"6%)1’2( ’

estimate = n :l:t MSTr —_I
(critical value) oL In FEM (under sum coding)
x S.e. (estimate) nk“"N C.I. for - N
e In the pulp experiment, fj = 60.40, MSTr = 0.447, T ' MSE
and the 95% confidence interval for 1 is 4. tﬂt% N l

Compare REM [0.447 E~61rr |
Splik-plot- design. 60.4043.182 | =— =[59.92,60.88] SSE ~ 6°AN-k

(Np 4-45~ bb , Futwre lecture)
¢ Reading: textbook, 2.5
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