$L M, L N_{p} .7-1 \sim 2 \rightarrow$ Residual Analysis: Theory

- Theory: define the residual for the $\underline{i}^{\text {th }}$ observation $\left(x_{i}, y_{i}\right)$ as
$\widehat{\varepsilon}_{i}=\underline{r_{i}}=\underline{y_{i}}-\hat{y}_{i}, \quad \hat{y}_{i}=\underline{\mathbf{x}_{i}^{T}} \underline{\hat{\beta}}$, fth row of model matrix \mathbf{X} $\underline{\hat{y}_{i}}$ contains information given by the model; $\underline{r_{i}}$ is the "difference" between $\underline{y_{i}}$ (observed) and $\underline{\hat{y}_{i}}$ (fitted) and contains information on possible model inadequacy.
- Vector of residuals $\underline{\mathbf{r}}=\left(\underline{r_{1}}, \ldots, \underline{r_{N}}\right)^{T}=\underline{\mathbf{y}}-\underline{\mathbf{X} \hat{\beta}}=(\mathbf{I}-\underline{H}) \underline{\mathbf{Y}}$

> That matrix

- Under the model assumption $E(\mathbf{y})=\mathbf{X} \beta$, it can be shown that

(b) $\underline{\mathbf{r}}$ and $\underline{\hat{\mathbf{y}}}$ are independent, \leftarrow
$\underset{\sim}{\operatorname{cov}(\mathrm{C})}$ $=\sigma^{2}(\mathrm{I}-\mathrm{H})$
(c) variances of r_{i} are nearly constant
(1) $\underline{Y}=\underline{X} \boldsymbol{\beta}+\underline{\varepsilon}=\underline{\hat{Y}}+\underline{\hat{\varepsilon}}$

Note. variance of r_{i} $\alpha \mid-h_{i}$ (leverage) $=1-H_{i i}$ $\hat{\varepsilon}_{i}$ often used to
check assumptions: (1) $E_{i}{ }^{i, i, d} N\left(0, \sigma^{2}\right)$ (2) $E(Y)=X B$ is a correct mean structure overall pattern individual observation (outlier)
$4 \propto$ Mahananobis dist. btwn design pts \& \bar{X}

$\sigma_{x} \leftrightarrow \mu_{x}$
Residual Plots $-L M, L N_{0} .7-7 \sim 9$

- Plot $\underline{r_{i}}$ vs. $\underline{\hat{y}_{i}}$ (see Figure 1): It should appear as a parallel band around $\underline{0}$. Otherwise, it would suggest model violation. If spread of r_{i} increases as $\underline{\hat{y}_{i}}$ increases, error variance of y increases with mean of y. May need a transformation of y. (Will be explained in future lecture.)
 \rightarrow Box plots

Plot $\underline{r_{i}}$ vs. $\underline{x_{i}}$: If not a parallel band around $\underline{0}$, relationship between y_{i} and x_{i} not fully captured, revise the $\underline{\mathbf{X} \beta}$ part of the model. factor | Plot $\underline{r_{i}}$ vs. time sequence: to see if there is a $\quad \begin{array}{l}\text { if available (or run order, } \\ \text { measure order }, \ldots \text {) }\end{array}$ |
| :--- | null plot

 \hat{y}_{i} or x_{i}

no replicate data
Plot of $\underline{r_{i}}$ vS. $\underline{\hat{y}_{i}}$

Figure 1: r_{i} vs. \hat{y}_{i}, Pulp Experiment
LLNP.I

Plot of $\underline{r_{i}}$ vs. treatment

- A powerful graphical display (due to Tukey) to capture the location, dispersion, skewness and extremity of a distribution. See Figure 3.

чLN 27

- $\underline{Q}_{1}=\underline{\text { lower quartile (} 25 \%}$ quantile), $\underline{Q_{3}}=\underline{\text { upper quartile (} 75 \%}$ quantile), $\underline{Q_{2}}=\underline{\text { median }}(\underline{50 \%}$ quantile, estimate of location parameter) is the white line in the box. $\underline{Q_{1}}$ and Q_{3} are boundaries of the black box.

- Minimum and maximum of observed values within

$$
\left[\underline{Q_{1}}-\underline{\underline{1.5}} \times \underline{I Q R}, \underline{Q_{3}}+\underline{\underline{1.5}} \times \underline{I Q R}\right]
$$

are denoted by two whiskers. Any values outside the whiskers are regarded as extreme values and displayed (possible outliers).

- If $\underline{Q_{1}}$ and $\underline{Q_{3}}$ are not symmetric around the median, it indicates skewness.

- Side-by-side box plots (LNp. 3-2~3) are useful to compare the difference between the distributions of several groups of data.

Box-(Whisker) Plot

Figure 3: Box-Whisker Plot

Normal Probability Plot $\leftarrow Q-Q$ plot (LM, LN p. $7-15 \sim 16$)

Original purpose : To test if a distribution is normal, e.g., if the residuals follow a normal distribution (see Figure 5). Q: Why need normality for error? \rightarrow can be used to identify outlier $\tau_{L N_{p} .30}$$\xrightarrow{\text { More powerful use in factorial experiments (discussed in Units } 5 \text { and } 6 \text {). }}$ - Let $r_{(1)} \leq \ldots \leq r_{(N)}$ be the ordered residuals. The cumulative probability for $\underline{r}_{\underline{(i)}}$ is $\underline{p_{i}}=\underline{(\underline{i}-\underline{0.5}) / N \text {. Thus the plot of }} \mathbf{L N p}$ \underline{p}_{i} vs. $r_{(i)}$ should be S-shaped as in Figure 4(a) if the errors ${ }^{1}$ are normal. By transforming the scale of the horizontal axis,
 LL $\mathrm{N}_{\mathrm{p} .} 29$

- Normal probability plot of residuals :

$$
\left(\underline{\Phi^{-1}}\left(\frac{\underline{i}-\underline{0.5}}{N}\right), \underline{r_{(i)}}\right), \quad i=1, \ldots, N, \quad \underline{\Phi}=\underline{\text { normal cdf. }} .
$$

If the errors are normal, it should plot roughly as a straight line. See Figure 5.

$$
R_{L} L N_{p} .30
$$

Regular and Normal Probability Plots of Normal

$z_{i}=\underline{\sigma} W_{i}+\underline{\mu} \leqslant W_{i}=\left(z_{i}-\mu\right) / \sigma \quad$ ind $\sim N(0,1)$
Normal probability plot of W_{i} 's $\Rightarrow W_{(i)}$ vs. $\Phi^{-1}: y=\dot{x}$
Normal probability plot of Z_{i} 's $\Rightarrow Z_{(i)}$ vs $\Phi^{-1}: y=\underline{\sigma} x+\underline{\mu}$

Normal Probability Plot : Pulp Experiment

* Reading: textbook, 2.6

$\mu_{\underline{i}}=E\left(y_{i j}\right) \underset{\text { interest: difference btwn all operators in this population }}{ }$
- In the pulp experiment the effects $\underline{\tau_{i}}$ are called fixed effects because the interest was in comparing the four specific operators in the study. If these four operators were chosen randomly from the population of operators in the plant, the interest would usually be in the variation among all operators in the population. Because the observed data are from operators randomly selected from the population, the variation among operators in the population is referred to as random effects. conditioned on these 4 operators
- One-way random effects model (REM $\stackrel{\text { cf. }}{\stackrel{\delta}{\text { FEM }} \text {) : }}$
 LN P.3-4 \&.3-8 where $\underline{\left.\varepsilon_{i j} \text { 's: } \quad \text { independent error terms with } N\left(0, \underline{\sigma^{2}}\right), \quad \mathbb{Q}: \text { Y }_{i j} \text { 's indep.? }\right] ~}$
 $\underline{\tau_{i} \text { 's: }} \quad \frac{\text { independent }}{w h y} \boldsymbol{N}\left(0, \underline{\sigma_{\tau}^{2}}\right)$, why?
parameters and $\underline{\tau_{i} \text { and } \varepsilon_{i j}}$ are independent (Why? Give an example.); $\underline{\underline{\sigma^{2}}}$ and $\underline{\underline{\sigma_{\tau}^{2}}}$ are the two variance components of the model. check Σ^{*} The variance among operators in the population is measured by $\underline{\sigma_{\tau}^{2}}$.

(ficieitione-way Random Effects Model: ANOVA

Under H_{0}^{*}, the F-test and the balance In the following, assume $\underline{n_{1}=\cdots=n_{k}}=\underline{n}$. same
$\begin{aligned} & \text { null } \\ & \text { dist. }\end{aligned}$ $Y \sim N\left(2 \mathbb{L}, \sigma^{2} I\right) \rightarrow H_{0}^{*}: \underline{\sigma_{\tau}^{2}=0}$.
 ANOVA table in KNp. 3-6 still holds. $\Omega(\operatorname{dim}=k) \quad \operatorname{span}\{\underline{1}\}=\omega(\operatorname{dim}=1)$

- Reason: under H_{0}^{*},
(under H_{0}^{*}) $\underline{\operatorname{SSTr}} \sim \underline{\sigma^{2}} \underline{\chi_{k-1}^{2}}$,
(under $H_{0}^{*} \& H_{A}^{*}$) $\underline{S S E} \sim \underline{\sigma}^{2} \chi_{N-k}^{2}, \begin{aligned} & =E\left(P_{2} Y\right) \\ & =\underline{Q}\end{aligned}$
 $\operatorname{cov}\left(P_{1} Y, P_{2} Y\right)=P_{1} \operatorname{cov}(Y) P_{2}^{\top}$

$$
=P_{1} \Sigma^{*} P_{2}^{\top}=0
$$

$$
\text { columns of } P_{1} \& P_{2} \text { are eigenvectors of } \Sigma^{*} \& P_{1} P_{2}=Q
$$ $\Omega_{*}^{\perp}, \Omega$: different eigenspace of Σ^{*}

 $S S T_{r}=\left\|P_{1} Y\right\|^{2}=\sum_{i} n\left(\bar{y}_{i}-\bar{y}_{. .}\right)^{2}\left(\underline{L N_{p}} .3-5\right)$

$$
\left.=\sum_{i}\left(\sqrt{n} \bar{y}_{i}--\sqrt{n} \bar{y}_{. .}\right)^{2} \sim\left(n \sigma_{\tau}^{2}+\sigma^{2}\right) \chi_{k-1}^{2}\right]
$$

$$
\begin{aligned}
\sqrt{n} \bar{y}_{i .} & =\sqrt{n}\left(\eta+\tau_{i}+\bar{\varepsilon}_{i}\right) \frac{i i d}{} N\left(\sqrt{n} \eta, n \sigma_{\tau}^{2}+\sigma^{2}\right) \\
\bar{y}_{.0} & =\overline{\bar{y}}_{i .} \quad \quad \text { check } L N_{\rho} 36
\end{aligned}
$$

$$
\frac{y_{0}}{y_{0}}=\frac{\sec }{\bar{y}_{i}} \quad\left[\text { check }\left\lfloor N_{p} 36\right]\right.
$$

$$
S S E=\left\|P_{2} Y\right\|^{2}=\sum_{i} \sum_{j i}\left(y_{i j}-y_{i-}\right)^{2}\left(\underline{N} N_{p} 3-5\right)
$$

ANOVA Tables $\left(n_{i}=n\right)$

- We can apply the same ANOVA and $\overline{\underline{F} \text {-test }}$ in the fixed effects case for analyzing data. 4 same test statistic

- However, we need to compute the expected mean squares under the alternative of $\underline{\sigma_{\tau}^{2}>0}$,
(i) for sample size determination, and
(ii) to estimate the variance components. $\left(\sigma_{\tau}^{2} \& \sigma^{2}\right)$

Expected Mean Squares for Treatments

- Equation (1) holds independent of σ_{τ}^{2},

SSE/N-K: an unbiased
(L_{p}.3-33) $\sigma^{2} \chi_{N-k}^{2}$

$$
\underline{E}(\underline{M S E})=\underline{E}\left(\frac{\underline{S S E}}{\underline{N-k}}\right)=\underline{\sigma^{2}}=\left[\begin{array}{l}
\text { SSE only contains } \\
\text { information of } \\
\text { error var. component }
\end{array}\right.
$$

- Under the alternative: $\underline{\sigma_{\tau}^{2}>0}$, and for $\underline{n_{i}=n}$,
($L N_{p, 3}$ 3-33) $\left(n \sigma_{t}^{2}+\sigma^{2}\right) \chi_{k-1}^{2}$

$$
\begin{align*}
& \left(n \sigma_{\tau}^{2}+\sigma^{2}\right) \chi_{k-1}^{2} \sim \tag{2}\\
& \underline{E}(\underline{M S T r})=\underline{E}\left(\frac{\underline{S S T r}}{\underline{k-1}}\right)=\sigma^{2}+n \sigma_{\tau}^{2}
\end{align*} \quad\left[\begin{array}{c}
E\left(\frac{\frac{\partial S \mid r}{k-1}-\frac{S D E}{N-k}}{n}\right)=\sigma_{\tau}^{2} \\
\left.\begin{array}{c}
\text { an unbiased } \\
\text { estimator of } \sigma_{\tau}^{2}
\end{array}\right]
\end{array}\right.
$$

- For unequal $\underline{n_{i} \text { 's, }} \underline{n}$ in (2) is replaced by

$$
\underline{n}^{\prime}=\frac{1}{4}\left[\sum_{i=1}^{k} \underline{n_{i}}-\frac{\sum_{i=1}^{k} \underline{n_{i}^{2}}}{\sum_{i=1}^{k} \underline{n_{i}}}\right] .
$$

STr contains information about factor var. component σ_{τ}^{2} error var component σ^{2}
($C f$ E(SSTr) of FEM in $L N_{P}$ 3-6)

The cross product term has mean 0 (because τ and ε are independent). It can be shown that $\quad \sim \sim \sigma_{\tau}^{2} \chi_{k-1}^{2}$

$$
\begin{aligned}
& \underline{E}(\underline{S S T r})=\underline{n} \underline{\underline{(k-1) \sigma_{\tau}^{2}}}+\underline{(k-1) \sigma^{2}}, \stackrel{c f}{\longleftrightarrow} \operatorname{In} \text { FEM }\left(L N_{p} \cdot 3-6\right) \\
& \underline{E}(\underline{M S T r})=\underline{E}(\underline{\underline{S S T r}} \overline{\underline{k-1}})=\underline{\sigma^{2}}+\underline{n \sigma_{\tau}^{2}} . \quad E(S S T r)=n \cdot \sum_{i}\left(\tau_{i}-\bar{\tau}\right)^{2} \\
&+(k-1) \sigma^{2}
\end{aligned}
$$

Variance components: estimation of σ^{2} and σ_{τ}^{2}

- From equations (1) and (2) in LN. 3-35, we obtain the following unbiased estimates of the variance components: - Can this be always $\geqslant 0$?
(Note. $\sigma_{\tau}^{2} \geqslant 0$) statistic is less than 1 . Obviously the null hypothesis $\underline{H_{0}}$ is not rejected when $F \leq 1$. Since variance cannot be negative, a negative variance estimate is $\underline{\text { replaced by }} \underline{0}$. This does not mean that $\boldsymbol{\sigma}_{\tau}^{2}$ is zero. It simply means that there is not enough information in the data to get a good estimate of σ_{τ}^{2}. not "accept
- For the pulp experiment, $\underline{n=5}, \underline{\underline{\hat{\sigma}^{2}}}=\underline{0.106}, \underline{\underline{\hat{\sigma}_{\tau}^{2}}}=(0.447-0.106) / 5=\underline{0.068}$, i.e., sheet-to-sheet variance (within same operator) is $\underline{0.106}$, which is about 50\% higher than $\begin{aligned} & \text { cfo } \mathrm{V} \text { Verator-to-operator variance } 0.068 .\end{aligned}$ Implications on process improvement: try to reduce
- In REM, $\underline{\eta}$, the population mean, is often of interest. From $E\left(y_{i j}\right)=\underline{\eta}$, we use the estimate \quad cf

In FEM $E\left(y_{i j}\right)=\mu_{i}$

the intercept parameter in FEM is usually of no interest

- $\underline{\operatorname{Var}}(\underline{\hat{\eta}})=\underline{\operatorname{Var}}\left(\underline{\bar{\tau}_{.}}+\underline{\bar{\varepsilon}_{. .}}\right)=\frac{\sigma_{\tau}^{2}}{\underline{\underline{k}}+\frac{\sigma^{2}}{\underline{N}}}$, where $\underline{N=\sum_{i=1}^{k} n_{i}}$. $\hat{\eta}=\bar{y}_{. .}=\eta+\bar{\tau}_{0}+\bar{\varepsilon}_{. .} \sim N\left(\eta, \sigma_{\bar{z} / k+\sigma^{2} / N}^{\underline{z}}\right)$

Confidence interval for $\underline{\eta}:-\bar{y}$. and MSGr are indep ($2 N_{p} 33$) and the 95% confidence interval for $\underline{\eta}$ is
C.I. for η :
$\bar{y}_{.} \pm t_{N-k}, \frac{\alpha}{2} \sqrt{\frac{M S E}{N}}$
compare REM and
Split-plot design

(No $_{p}$.4-45~66.future lecture)
* Reading: textbook, 2.5

