One-way layout and ANOVA: An Example T one factor exp't (qualitative or quantitative)

 Reflectance data in pulp experiment: each of four operators made five pulp sheets; reflectance was read for each sheet using a brightness tester.Randomization : assignment of $\underline{20} \underline{\text { containers of pulp to operators and order of }}$
reading.

Table 1: Reflectance Data, Pulp Experiment

* response : reflectance * (treatment) factor:
- operator (qualitative)

Objective : determine if there are "differences" among operators in making sheets and reading brightness.

4 levels - A.B.C.D

- Exp'tal unit : container of pulp 20 EOs
 randomized Each treatmet repeats replicates What if measure 5 cf. points on a sheet?

$\xrightarrow{\text { Model }}$ and $\xrightarrow{\text { ANOVA }} \xrightarrow[\begin{array}{cc}H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{k} \Rightarrow & X_{\omega}=\mathbb{\mathbb { R }} \\ \text { or } \tau_{1}=\tau_{2}=\cdots=\tau_{k} & \\ X \Omega=(*)\end{array}]]{ }$

 Model: If $n_{1}=n_{2}=\cdots=n_{k}$ (balanced one-way)

Recall $\frac{\text { conceptual }}{\text { model (} L N_{p} 1-2 \text {) }}$
for one qualitative
factor
$y_{i j} \xrightarrow{\text { indef. }} N\left(\mu_{\underline{i}}, \sigma^{2}\right)$

$]=\eta\left[\begin{array}{c}1 \\ \vdots \\ i \\ 1 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 11 \\ d_{0}\end{array}\right]+\tau_{1}\left[\begin{array}{c}1 \\ \vdots \\ \vdots \\ \vdots \\ 0 \\ \vdots \\ \vdots \\ 0\end{array}\right]$
$\left[\begin{array}{c}1 \\ \vdots \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \\ 1 \\ n \\ \hline 1\end{array}\right]$
$\tau_{2}\left[\begin{array}{l}0 \\ \\ +\end{array}\right]$

$+\cdots+\tau_{k}$
$\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ \hline 1 \\ +d_{k}\end{array}\right]+$
regression expression
$Y=X B+\mathcal{E}$
$X=\left[\begin{array}{lll}d_{0} d_{1} & d_{2} & d_{k}\end{array}\right]-(*)$
$\Rightarrow k+1$ parameters in B
\Rightarrow over-parameterized
\Rightarrow unidentifiable
(LM, LN 5 5-10~11)
$\underline{\mu} \equiv 2 d_{0}+\tau_{1} d_{1}+\cdots+\tau_{k} d_{k}$

Model fit:

$$
\underline{y_{i j}}=\hat{\hat{\eta}}+\hat{\tau}_{i}+r_{i j}
$$

estimate of $\frac{\mu_{1}+\cdots+\mu_{k}}{k}=\eta=\frac{\bar{y}}{\}}+\frac{\left(\bar{y}_{i .}-\bar{y}_{. j}\right)}{2}+\left(y_{i j}-\bar{y}_{i_{i}}\right)$, estimate of $\mu_{i-\eta}$
where " \doteq " means average over the particular subscript.
ANOVA Decomposition : $\left.\begin{array}{l}\text { residuals } \\ \text { under } \omega\end{array}\right]$

