One-way layout and ANOVA: An Example

Reflectance data in pulp experiment: each of four operators made five pulp

sheets; reflectance was read for each sheet using a brightness tester.

Randomization : assignment of 20 containers of pulp to operators and order of

reading.
Table 1: Reflectance Data, Pulp Experiment

Operator
A B C D

59.8 59.8 60.7 61.0
60.0 60.2 60.7 60.8
60.8 60.4 60.5 60.6
60.8 599 609 60.5
59.8 60.0 603 60.5

Objective : determine if there are differences among

operators in making sheets and reading brightness.
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Model and ANOVA

Model :

yii:n+ri+81b i=1,...k j=1,...,n,

J~
I~

where y;; = jth observation with treatment i,

= ith treatment effect,

o™
1 e |
I

error, independent N (0,6?).




Model fit:

___________________

where “. ” means average over the particular subscript.

ANOVA Decomposition :

k

k n ko
ZZ 2= Y (-5 P+ Y Y G5t

=1 j=1 i=1 i=1 j=1

>

p. 3-6

F-Test
ANOVA Table
Degrees of Sum of Mean Expected
Source Freedom (df) Squares Squares MS
treatment  k— 1 SSTr =Yk (3. —3.)* MSTr=SSTr/df  Egq(MSTr)
residual Nk SSE=TL X (i —5i) MSE=SSE/df  Eq(MSE)
total N-1 T (i —9.)°

The F statistic for the null hypothesis that there
1s no difference between the treatments, i.e.,

Hy:tp=--- =T,

18
p o EnGe—3.)/(k=1) _ MSTr
XY i)’/ (N —k) MSE

which has an F' distribution with parameters k— 1 and N — k.




ANOVA for Pulp Experiment

Degrees of Sum of Mean

Source  Freedom (df) Squares  Squares F

operator 3 1.34 0.447 4.20
residual 16 1.70 0.106
total 19 3.04

Prob(F3 16 > 4.20) = 0.02 = p-value,

thus declaring a significant operator-to-operator difference at level 0.02.

e Further question: among the 6 = (‘2‘) pairs of operators, what pairs show
significant difference?
Answer: Need to use multiple comparisons.

p. 3-8
p)

Constraint on the Parameters s

* The model in LNp.3-4 has K distinct
levels, but K+1 regression parameters

over-parameterized  ="T= singular  unidentifiable
cannot estimate parameters (Q: but why can do overall F-test?)

b

« Some common constraint on  ’s
k . .
e Y Ti=0 dummy variables: sum coding

e 71 =0 dummy variables: treatment coding

% Reading: textbook, 2.1
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Multiple Comparisons

e Consider the full model y;; =1 +7; +&;;. For one pair, say (i, j), of

treatments, test Hg- : T; = T; against H3- 1 T; # T;.

p. 3-10

where n; = number of observations for treatment i,
6_2 = RSSq/dfg in ANOVA; declare “treatments
i and j different at level o if

il >ty

o.
A

e Suppose k' tests are performed to test Hy : T = -+ = Ty.
Experimentwise error rate (EER) = Probability of
declaring at least one pair of treatments significantly
different under Hy. Need to use multiple comparisons
to control EER.

Avs. B Avs.C Avs.D Bvs.C Bvs.D Cvs.D
—0.87 1.85 2.1 2.72 3.01 0.29
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Bonferroni Method

e Declare “1; different from 7; at level o™ if [t;;| >ty 4 o , where &' =
— ——— —_— ¢ 2& —

number of tests.

e For one-way layout with k treatments, k' = (]2‘) = 1k(k—1), as k increases,

k' increases, and the critical value #,,_ ko gets bigger

(i.e., method less powerful in detecting differences).

e Advantage: It works without requiring independence assumption.

e For pulp experiment, take & =0.05, k =4, k' =6, 14 0.05/12 =3.008. Among
the 6 ;;-values (see LNp.3-10), only the #-value for B-vs-D, 3.01, is larger.
Declare “B and D different at level 0.05”.
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Tukey Method

e Declare “E different from T; at level o 1f

L

|tij] > 7§ qk.N—k.o)

where qx y—«.o 18 the upper o-quantile of the
Studentized range (SR) distribution with
parameter k and N — k degrees of freedom.
(see distribution table on LNp.3-13)

e For pulp experiment,

1 1 4.05
5 QkN-k0.05 = 5 4416005 = ~ /5 = 2.86.

Again only B-vs-D has larger #;;-value than
2.86 (See LNp.3-10). Tukey method is more
powerful than Bonferroni method because

2.86 is smaller than 3.01 (why?)
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Selected values of gy v o for oo = 0.05

2 3 4 5 6 7 8 9 10 11 12 13 14 15
17.97 26.98 32.82 37.08 40.41 43.12 45.40 47.36 49.07 50.59 51.96 53.20 54.33 55.36
6.08 8.33 9.80 10.88 11.74 12.44 13.03 13.54 13.99 14.39 14.75 15.08 15.38 15.65
4.50 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46 9.72 9.95 10.15 10.35 10.52
3.93 5.04 5.76 6.29 6.71 7.05 T35 7.60 7.83 8.03 8.21 8.37 8.52 8.66
3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 17 7.32 7.47 7.60 7.72
3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65 6.79 6.92 7.03 7.14
3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.43 6.55 6.66 6.76
3.26 4.04 4.53 4.89 5.17 5.40 5.60 T2 592 6.05 6.18 6.29 6.39 6.48
3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87 5.98 6.09 6.19 6.28
3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72 5.83 593 6.03 6.11
3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71 5.81 5.90 5.98
12 3.08 3.77 4.20 451 4.75 4.95 5.12 5:27 5.39 5.51 5.61 5.71 5.80 5.88
13 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53 5.63 5.71 5.79
14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46 5.55 5.64 5.71
15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31 5.40 5.49 5.57 5.65
16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26 5.35 5.44 552 5.59
a=upper tail probability, v=degrees of freedom, k=number of treatments

= S v ® 9w e w <

For complete tables corresponding to various values of o refer to Appendix E.

+ Reading: textbook, 2.2
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One-Way ANOVA with
a Quantitative Factor

e Data:
Yy = bonding strength of composite material,
x = laser power at 40, 50, 60 watt.

Table 2: Strength Data, Composite Experiment

Laser Power (watts)

4 50 60
25.66 29.15 35.73
28.00 35.09 39.56
20.65 29.79 35.66
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One-Way ANOVA (Contd)

Table 3: ANOVA Table, Composite Experiment

Degrees of  Sum of Mean
Source Freedom  Squares Squares F
laser 2 224184 112.092 11.32
residual 6 59422  9.904
total 8 283.606

e Conclusion from ANOVA : Laser power has a

significant effect on strength.

e To further understand the effect, use of multiple
comparisons is not useful here. ( Why? )

e The effects of a quantitative factor like laser power can be decomposed into

linear, quadratic, etc.

Linear and "
Quadratic Effects

e Suppose there are three levels of x (low, medium, high)
and the corresponding E(y,) values are p = (uz, pp, )’

) ML
Linear contrast : py —pp = (—1,0,1) ( MM ) :
HH

N—

ML
Quadratic contrast : yuy, — 2y + g = (1, =2 1) Um
MH

(—1,0,1) and (1,—2,1) are the linear and quadratic contrast

vectors; they are orthogonal to each other.




Linear and Quadratic Effects (Contd.)

e Using (—1,0, 1) and (1, —2, 1), we can write a more detailed regression

model y = X[} + €, where the model matrix X is given below.

e Normalization : Length of (—1,0,1) =+/2, length of (1,—2,1) =+/6,
divide each vector by its length in the regression model. (Why ? It provides

a consistent comparison of the regression coefficients. But the #-statistics in

the next table are independent of such (and any) scaling.)

e Normalized contrast vectors:
linear:  (=1,0,1)/v2=(-1/2,0,1/V2),
quadratic: (1,—2,1)/v/6 = (1/v/6,-2/v/6,1//6).

Estimation of Linear and Quadratic Effects

o Let g, B/, B;_ denote respectively the intercept, the linear effect and the quadratic
effect based on normalized contrasts and let 8 = (B, B; B*Z)’ . An estimator /3 of 8
1s given by

R B V3 V3 V3 I
B=| B8 |=| =/v2 0o U2 3
B; yve  =2/v6 1/V6 y

3

e We can write ﬁ = A'y, where

/3 =12 1/v/6 1.
A= 1,3 0o  -2//6 and §=1[ 5
1/V3 1/\/§ 1/\/6 V3.

e Since the columns of A constitute a set of orthonormal vectors, i.e. A’A = 5. Let
X =[A’---A]'. We have
B _ A/Z: (AIA)_IA/S’ _ (X/X)_lX/X,

where X is the model matrix and Y is the response vector.

This shows that 3 is identical to the least squares estimate of 3.

¢ Running a multiple linear regression with response y and predictors x; and x4, we get
By =31.0322, B} =8.636, B = —0.381.
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Tests for Linear and Quadratic Effects

Table 4: Tests for Polynomial Effects, Composite Experiment

Standard
Effect Estimate Error 1 p-value
linear 8.636 1.817 4.75 0.003
quadratic —(.381 1.817 —0.21 0.841

e Further conclusion : Laser power has a significant linear (but not quadratic)

effect on strength.

e Another question : How to predict y-value (strength) at a setting not in the
experiment (i.e., other than 40, 50, 60) ? Need to extend the concept of
linear and quadratic contrast vectors to cover a whole interval for x. This

requires building a model using polynomials.

p. 320

Orthogonal Polynomials

e For three evenly spaced levels m — A, m, and m + A,

define the first and second degree polynomials :

hx) = :

A
Pz (x) = [

Therefore, P;(x) and P>(x) are extensions of the

—1,0and 1, forx=m—A.m,m+A),

__} (=1, —2and l,forx=m—Amm+A).

linear and quadratlc contrast vectors. (Why ?)

e Polynomial regression model :

y=B§+ B x PL(x)/V2+B; x Pr(x)/V6+e,

obtain regression (i.e., least squares) estimates BS = 31.03, B“{ = 8.636,

B; = —0.381. ( Note : BT and B; values are same as in Table 4).
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Prediction based on Polynomial Regression Model

e Fitted model:

E(yy) = iy = 31.0322 + 8.636 x Py (x)/V2 —0.381 x P2 (x) / V6,

e To predict fI, at any x = x*, plug in the x* on the right side of the regression
equation. For x = 535, because m = 50, A = 10,

55—50 1
Pl(ﬁ):_lo :Ea
55-50\* 2 5
P — —_— — = — —
2(35) 3[( 10 ) 3} 4’
fiss = 31.032248.636(0.5/v2) —0.381(—=1.25/V6)
—  34.2803.

+ Reading: textbook, 2.3
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Residual Analysis: Theory

e Theory: define the residual for the i observation (x;,y;) as

i"l:ﬁ—&, )’;i E

2t l

Yi contains information given by the model, r; is the

“difference” between y; (observed) and y; (fitted)
and contains information on possible model inadequacy.

e Vector of residuals r = (ry,...,ry)" =y — XB.

e Under the model assumption E(y) = XJ, it can be shown that
(a) E(r) =0,

(b) r and y are independent,

(c) variances of r; are nearly constant

for “nearly balanced” designs.

Y=XB+e=Y+E
Y= X8+ X B+ & = (X, p,+ HX,B, ) HU-H)X,B,+ €)= _X )




Residual Plots p. 323

e Plot r; vs. J; (see Figure 1): It should appear as a parallel band around 0.

Otherwise, it would suggest model violation. If spread of r; increases as y;

increases, error variance of y increases with mean of y. May need a

transformation of y. (Will be explained in future lecture.)

e Plot r; from replicates per treatment (see Figure 2): to see

if error variance depends on treatment.

e Plot r; vs. x;: If not a parallel band around 0, relationship between

y; and x; not fully captured, revise the X3 part of the model.

e Plot r; vs. time sequence: to see if there is a

time trend or autocorrelation over time.

= x X * g Eed
> >
P ™ "x " * i x ™ * x
x x x 2 = e » > 2
= ® = x x * ox ® X x o3 * x = - - =
x » ob & e x. O —w— — —m— — g —w— O[T — T
x n = ol 2 = = = o o= x x
» R . T e X T
x o= - > x A e ox
x » * = . = 2 e
£o8 x E >
x o =
0——’—3;5—“——,(__)(__ o 5 or = % or x
3
o * » = i
x > e
x ;§§§=§ Mxpen = 7T em
» K of— s ——— —_ of— — _——— — A =
= £ > P
x}’ g, o T ST
R 2o ot TS = = ™
> Fu
e T o=
=
¥ or < = ==
» ¥ i

p.3-24

Plot of r; vs. y;

residual

-0.2 0.0

-0.4

I I I I I I I
60.1 60.2 60.3 60.4 60.5 60.6 60.7

fitted

Figure 1: r; vs. y;, Pulp Experiment
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Plot of r; vs. treatment

0.6

0.4

0.2

-0.4

operator

Figure 2: r; vs. treatment, Pulp Experiment
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Box-(Whisker) Plot

e A powerful graphical display (due to Tukey) to capture the location,

dispersion, skewness and extremity of a distribution. See Figure 3.

e (1 = lower quartile (25% quantile), O3 = upper quartile (75% quantile),

(), = median (50% quantile, estimate of location parameter) is the white

line in the box. @ and Q3 are boundaries of the black box.

e /OR =interquartile range (length of box) = O3 — Q1: measure of dispersion.

e Minimum and maximum of observed values within
(01— LS x IQR, Q3+ L5 x IQR]

are denoted by two whiskers. Any values outside the whiskers are regarded

as extreme values and displayed (possible outliers).

e If O and Q3 are not symmetric around

the median, it indicates skewness.

e Side-by-side box plots (LNp. 3-2~3) are useful to compare the difference

between the distributions of several groups of data. »




Box-(Whisker) Plot

Figure 3: Box-Whisker Plot
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Normal Probability Plot

Original purpose : To test if a distribution is normal, e.g., if the residuals

follow a normal distribution (see Figure 5).

More powerful use in factorial experiments (discussed in Units 5 and 6).

Let ra) < ... <rg be the ordered residuals. The cumulative
(i—0.5)/N. Thus the plot of
Di vs. r(;) should be S-shaped as in Figure 4(a) if the errors

probability for r(; is p; =

are normal. By transforming the scale of the horizontal axis,

the S-shaped curve is straightened to be a line (see Figure 4(b)).

Normal probability plot of residuals :

(Cb_l (L_£>,r@>, i=1,....N,  &® =normal cdf.
N =

If the errors are normal, it should plot roughly as a straight line. See

Figure 5.

p.3-28
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Regular and Normal Probability Plots of Normal

@) CDF (®)
104 101
o8- i
0.6- .

Figure 4: Normal Plot of r;, Pulp Experiment
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Normal Probability Plot : Pulp Experiment

©
c

0.4

0.2

-0.4

I T ] I T
-2 -1 0 1 2

normal quantiles

Figure 5: Normal Plot of r;, Pulp Experiment

+ Reading: textbook, 2.6
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Pulp Experiment Revisited

e Compare the 2 scenarios
(S1) plant has only 4 operators (or

only interested in these 4 operators)

— T;’s: parameters (unknown fixed values)

— interest: difference btwn the 4 specific T;’s

(S2) 4 operators randomly sampled from a

large population of operators

— T;’s: random variables

— interest: difference btwn all operators in this population

e In the pulp experiment the effects t; are called fixed effects because the

interest was in comparing the four specific operators in the study. If these

four operators were chosen randomly from the population of operators in

the plant, the interest would usually be in the variation among all operators

in the population. Because the observed data are from operators randomly

selected from the population, the variation among operators in the

population is referred to as random effects.

p. 3-32

e One-way random effects model (REM <— FEM) :

o= Mot u ot g

where €;;’s:  independent error terms with N(0,62),

ti’s:  independent N(0,07),

and T; and €;; are independent (Why? Give an example.);

o2 and 62 are the two variance components of the model.

2

The variance among operators in the population is measured by o7.




One-way Random Effects Model: ANOVA

e In the following, assume ny = --- = ng = n.

e The null hypothesis for the FEM:

should be replaced by
H; 02 =0.
Under Hj, the F-test and the
ANOVA table in LNp. 3-6 still holds.
e Reason: under i*
SSTr ~ 6>z

[a—

and —
SSE ~ &’

£
Y

bl

and they are independent.
Therefore the F'-test has the
distribution Fy_ y_ under H;.
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ANOVA Tables (n; = n)

e We can apply the same ANOVA and F-test in the fixed effects case for

analyzing data.

Source d.f. SS MS E(MS)
—1  SSTr MSTr=9L  o%+nol

_ SS 2
1

treatment

k
residual N —
total N —

Pulp Experiment
Source d.f. SS MS E(MS)

treatment 3 134 0447 o©>+5062
residual 16 1.70  0.106 o2
total 19 3.04

e However, we need to compute the expected mean squares under the

alternative of 62 > 0,

(1) for sample size determination, and

(11) to estimate the variance components.
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Expected Mean Squares for Treatments

e Equation (1) holds independent of 62,

B SSE \
E0usE) (3 ) =< o)

e Under the alternative: 62 > 0, and for n; = n,

SSTr\ 5 5

E(MSTr) = L) -t 2

e For unequal n;’s, n in (2) is replaced by

p. 3-36

Proof of (2)

k 2
SSTr = Zﬁ<)7i. —y‘..)_

The cross product term has mean O (because T and € are independent). It can be

shown that

Therefore

E(S8Tr) = n(k—1)o; + (k—1)0’

E(MSTr) = E(k_l
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Variance components: estimation of o2 and G
e From equations (1) and (2) in LNp. 3-35, we obtain the followmg unblased

estimates of the variance components:

&2 MSE and (52 — MSTr —MSE
- n

Note that 6% > 01f and only if MSTr > MSE, which is equivalent to F > 1.
Therefore a negative variance estimate g% occurs only if the value of the

statistic is less than 1. Obviously the null hypothesis Hy is not rejected when

F <'1. Since variance cannot be negative, a negative variance estimate is

replaced by 0. This does not mean that G_% is zero. It simply means that there
is not enough information in the data to get a good estimate of 62.

e For the pulp experiment, n = 5, 6_2 =0.106, 6_,% = (0.447—0.106)/5 = 0.068,
1.e., sheet-to-sheet variance (within same operator) is 0.106, which is about

50% higher than operator-to-operator variance 0.068.

Implications on process improvement: try to reduce

the two sources of variation, also considering costs.
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Estimation of Overall Mean n

e In REM, 1, the population mean, is often of interest.

From E(y;j) =M, we use the estimate

=
e Var(f)) =Var(T +€.) = £+GE2’ where N = Y~ | n;.

2
For n; = n, Var(f}) = & + G—i = ((5 +no )
Using @ in LNp.3-35, _sz_
Confidence interval for n:

().

e In the pulp experiment, 7| = 60.40, MSTr = 0.447,
and the 95% confidence interval for 1 is

10.447
60.40+3.1824/ —— = [59.92,60.88].
5x4

% Reading: textbook, 2.5




