$1)$ test $\underline{\omega}$:model $1(y \sim 1)$ against $\Omega:$ model $2(y \sim 1+\underline{A})\left[d f_{\omega}-d f_{\Omega}=2\right]$
2) test $\underline{\omega}$:model $2(y \sim 1+A)$ against $\Omega:$ model $4(y \sim 1+A+\underline{B})\left[d f_{\omega}-d f_{\Omega}=3\right]$
3) test $\underline{\omega}$:model $4(y \sim 1+A+B)$ against $\underline{\Omega}$:model $5\left(y \sim 1+A+B+\underline{A: B)}\left[d f_{\omega}-d f_{\Omega}=\underline{6}\right]\right.$ -

- invariant to the choice of dummy variables since they generate same ω and Ω
- ANOVA could have different results when the order of effect sequence is changed, e.g., anova ($y \sim 1+B+A+A: B$):

Cf

$\chi)$ test $\underline{\omega}$:model $4(y \sim 1+B+A)$ against $\underline{\Omega}:$ model $\mathbf{5}(y \sim 1+B+A+A: B)\left[d f_{\omega}-d f_{\Omega}=\underline{6}\right]$ - anova $(y \sim 1+A+B+A: B)$ and anova $(y \sim 1+B+A+A: B)$ will have identical results when orthogonality exists between the three groups of effects: $\operatorname{span}\left\{d_{i}^{A}\right\}$, $\operatorname{span}\left\{d_{j}^{B}\right\}, \underline{\operatorname{span}\left\{d_{i j} A: B\right\}}$, because in the case, $R S S_{\omega}=R S S_{\Omega}$ would equal for 1) and β), 2) and α), 3) and $\chi) \rightarrow$ furthermore, also identical to the drop-one t-tests \& F-tests
$>$ consider the full model: $\stackrel{\text { ¢f }}{\leftrightarrows}$ submodels

$$
y=\beta_{0}+\underline{\beta_{1} g_{1}}\left(x_{1}, \ldots, x_{m}\right)+\underline{\beta_{2} g_{2}}\left(x_{1}, \ldots, x_{m}\right)+\cdots+\underline{\beta_{k} g_{k}}\left(x_{1}, \ldots, x_{m}\right)+\epsilon
$$

For $l \leq i \leq k$, should the term $\beta_{i} g_{i}$ be included in the final fitted model?

- : sequential (Type I ANOTA)
- : drop one (Type III ANOVA)
main purpose of performing
t-\& F-tests

Example: 6 effects, I,	$>$ (sub-)model: a model
$y_{\sim} \rightarrow p=0$	2^{k} submodelswith a subset of all k terms, e.g.,
	all sub-models (
	sub-model
$P=5$	- connecting
	model nesting
	* Ca
full model	"groups" of effects

$L M, L N_{P} .5-8 \sim 9 \rightarrow$ Orthogonality

- Q: consider the two models: $\quad Y=X_{1} \beta_{1}+\varepsilon \quad Y=X_{1} \beta_{1}+X_{3} \beta_{2}+\varepsilon$

$$
\text { model 1: } y=\beta_{0}+\underline{\beta}_{\underline{I}} x_{1}+\varepsilon, \overline{\text { model 2 }}: y=\beta_{0}+\underline{\beta}_{\underline{1}} x_{1}+\underline{\beta_{2}} \underline{x_{2}}+\stackrel{y}{\varepsilon}
$$

In general, $\hat{\beta}_{1}$, in the 2 models are not identical (of course, test $\mathrm{H}_{0}: \beta_{l}=0$ not identical neither) an exception: when x_{1} and x_{2} are orthogonal

$\begin{aligned} & \text { ue model } \left.=\text { model } 2 \quad \begin{array}{l} \mathbf{X}_{1}^{\top} \boldsymbol{X}_{\mathbf{2}}=0 \end{array}\right] \\ & \underline{E}\left(\underline{\hat{\beta}_{1}}\right)=\underline{\beta_{1}}+\left(X_{1}^{T} X_{1}\right)^{-1}{ }^{1}{ }_{1}^{T} X_{2} \beta_{2} \end{aligned}$

- $\underline{Y}=\underline{X} \underline{\beta}+\varepsilon=\underline{X_{1}} \beta_{1}+\underline{X_{2}} \beta_{2}+\varepsilon$, where $\underline{\beta}=\left[\underline{\beta}_{1} \underline{\beta}_{2}\right]^{\mathrm{T}}$ and $\underline{X}=\left[\underline{X_{1}} \underline{X_{2}}\right]$ with the property

$$
\begin{aligned}
& \boldsymbol{X}^{T} \boldsymbol{X}=\left(\begin{array}{ll}
\boldsymbol{X}_{1}^{T} \boldsymbol{X}_{1} & \boldsymbol{X}_{1}^{T} \boldsymbol{X}_{2} \\
\boldsymbol{X}_{2}^{T} \boldsymbol{X}_{1} & \boldsymbol{X}_{2}^{T} \boldsymbol{X}_{2}
\end{array}\right)=\left(\begin{array}{cc}
\boldsymbol{X}_{1}^{T} \boldsymbol{X}_{1} & \boldsymbol{0} \\
\boldsymbol{0} & \boldsymbol{X}_{2}^{T} \boldsymbol{X}_{2}
\end{array}\right) \Rightarrow\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}=\left(\begin{array}{cc}
\left(\boldsymbol{X}_{1}^{T} \boldsymbol{X}_{1}\right)^{-1} & \boldsymbol{0} \\
\boldsymbol{0} & \left(\boldsymbol{X}_{2}^{T} \boldsymbol{X}_{2}\right)^{-1}
\end{array}\right)
\end{aligned}
$$

 \Rightarrow note that $\hat{\boldsymbol{\beta}}_{1}$ will be the same regardless of whether \boldsymbol{X}_{2} is in the model or not (and vise versa). Under model $Y=\underline{X_{1} \beta_{1}}+\mathcal{E} \Rightarrow \widehat{\beta_{1}}=\left(X_{1}^{\top} X_{1}\right)^{-1} X_{1}^{\top} Y$
Q: what if only two predictors, say some x_{i} in X_{1} and some x_{j} in X_{2}, are orthogonal?

- Randomization: In an exp't, suppose that true model is $\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\underline{\boldsymbol{Z}} \boldsymbol{\gamma}+\boldsymbol{\varepsilon}$, but \boldsymbol{Z} $\overline{\text { cannot be measured }}$ or may not even be suspected $\Rightarrow E(\hat{\boldsymbol{\beta}})=\boldsymbol{\beta}+\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \underline{\boldsymbol{X}^{T} \boldsymbol{Z}} \gamma \Rightarrow$ Q : what's the best way of controlling \boldsymbol{X} to make \boldsymbol{X} and \boldsymbol{Z} as orthogonal as possible? 4
- Generalization.

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)

Some Properties of (Multivariate) Normal Distribution
(N1) Linear transformation of normal is still normal
$E^{*}\left[(A 2+C)(A Z+C)^{7}\right]$

(N2) When 1 st and 2 nd moments are given, the normal distribution is specified.
ie., mean vector \& variance -covariance matrix.
(NB) $\underline{\boldsymbol{Z}}=\left[\underline{\boldsymbol{Z}_{1}} \underline{\underline{\boldsymbol{Z}_{2}}}\right] \sim \underline{\text { normal, }}$, and $\underline{\boldsymbol{Z}_{1}}, \underline{\boldsymbol{Z}_{2}} \underline{\text { uncorrelated }}$ (i.e., $\underline{\operatorname{cov}\left(\boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}\right)=\mathbf{0}}$)
$B_{y}(N 3) \Rightarrow \underline{Z_{1}, Z_{2}}$ independent normal $\frac{W_{1}}{W_{1}}=\left[\begin{array}{l}W_{1} \\ W_{2}\end{array}\right]\left[\begin{array}{l}A_{1} \\ A_{2}\end{array}\right] Z, \operatorname{cov}\left(W_{1}, W_{2}\right)=E^{*}\left(W_{1} W_{2}^{\top}\right)$
N4) $Z \sim N(\mu, \Sigma), W_{1}=A_{1} Z, W_{2}=A_{2} Z$, can be generalized to $\underline{K} \& A_{i} \Sigma A_{3}{ }^{\top}=0, i \neq \mathcal{F}^{\top}$
By (N3) $\Rightarrow W_{1}, W_{2}$ are independent inf $A A_{1} \Sigma A_{2}^{T}=0 . \rightarrow I f \Sigma=\sigma^{2} I$, then
(Nu) $\quad A_{1} \Sigma A_{2}^{\top}=\mathbf{Q} \Leftrightarrow A_{1} A_{2}^{\top}=\mathbf{Q}$

$\begin{aligned} & \text { length } \\ & \text { of } \boldsymbol{W}_{c}\end{aligned}$
for $1 \leq i<j \leq k, \Rightarrow \boldsymbol{W}_{1}^{T} \boldsymbol{W}_{1}, \boldsymbol{W}_{2}^{T} \boldsymbol{W}_{2}, \ldots, \underline{\boldsymbol{W}_{k}^{T} \boldsymbol{W}_{k}}$ are mutually independent.
$=$
(N6) \underline{Z} : an $\underline{\underline{n}} \times 1$ random vector and $Z \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $\begin{aligned} & \text { useful for the independence } \\ & \text { between sums of squares }\end{aligned}$

- if $\underline{\Sigma}$ is singular and has rank $\underline{\underline{r}}(\leq n), \rightarrow$ The possible vectors of \boldsymbol{Z} only occupy let $\boldsymbol{\Sigma}^{-}$be a generalized inverse of $\underline{\boldsymbol{\Sigma}}$ (i.e., $\underline{\boldsymbol{\Sigma} \boldsymbol{\Sigma}^{-} \boldsymbol{\Sigma}=\boldsymbol{\Sigma} \text {), then an } \underline{\boldsymbol{r}} \text { - } \operatorname{dim}, ~}$ not unique- $(\boldsymbol{Z}-\boldsymbol{\mu})^{T} \underline{\Sigma^{-}}(\boldsymbol{Z}-\boldsymbol{\mu}) \sim \underline{\chi_{\underline{r}}^{2}}$ subspace of $\mathbb{R}^{\underline{2}}$

