Fit

49.90

X denotes an observation whose X value gives it large leverage.

52.50

SE Fit

4.25

Residual

2.60

St Resid

0.63 X

Obs

-original 16th obs

p. 2-12

Residual Plots After Outlier Removal

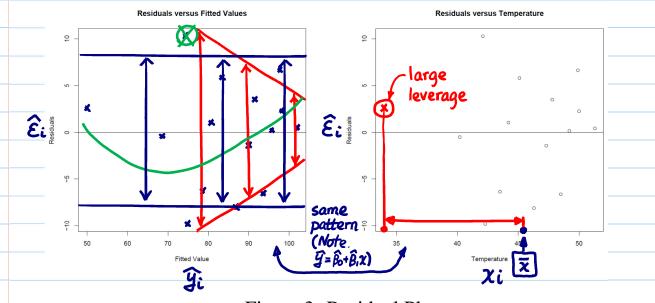


Figure 3: Residual Plots

Comments: No systematic pattern is discerned.

- 1 non-constant variance
 - 2 curvature in the mean of residuals

objective of many regression analysis The proposition of the Breast Cancer Data μ_{\times} of the Breast Cancer Data μ_{\times}

- The fitted regression model is Y = -21.79 + 2.36X, where Y denotes the mortality rate and X denotes the temperature. $\widehat{\beta}_0$
- The predicted mean of \underline{Y} at $\underline{X} = x_0$ can be obtained from the above model. For example, prediction for the temperature of 49 is obtained by substituting $x_0 = 49$, which gives $\underline{y_{x_0}} = 93.85$. $\boxed{y_{x_0}} \Rightarrow \underline{y_{x_0}} = \mu_{x_0} + \underline{\varepsilon}$

• The standard error of $\hat{\mu}_{x_0}$ is given by

The standard error of μ_{x_0} is given by $\begin{array}{c}
\text{Var}(\hat{\mathcal{U}}_{x_0}) \\
\text{= Var}(\hat{\beta}_0 + \hat{\beta}_1 x_0) \\
\text{(exercise,} \\
\text{note.} \\
\text{cov}(\hat{\mathbf{g}}) = \mathbf{G}(\mathbf{X}^T\mathbf{X})^T
\end{array}$ $s.e.(\hat{\mu}_{x_0}) = \hat{\mathbf{G}}\sqrt{\frac{1}{N} + \frac{1}{N} \frac{(\bar{x} - x_0)^2}{\sum_{i=1}^{N} (x_i - \bar{x})^2/N}}$

Note1. It's a function of xi's only

Note2. What happens

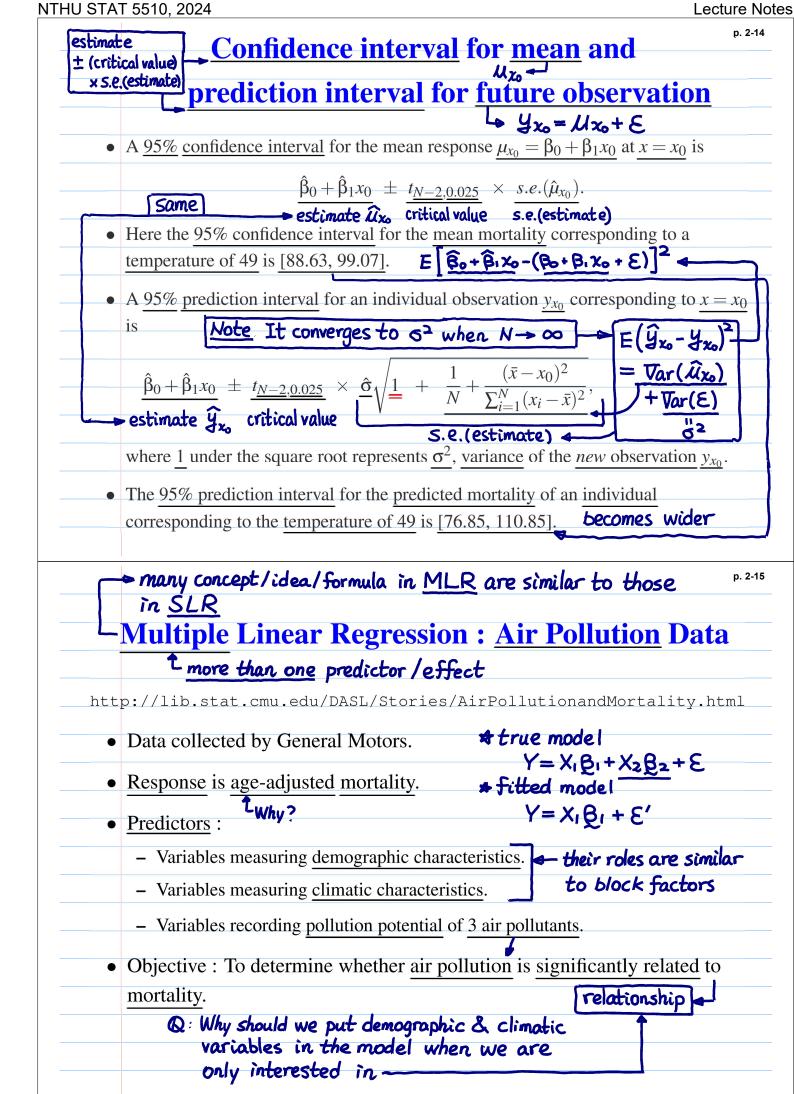
if to is away

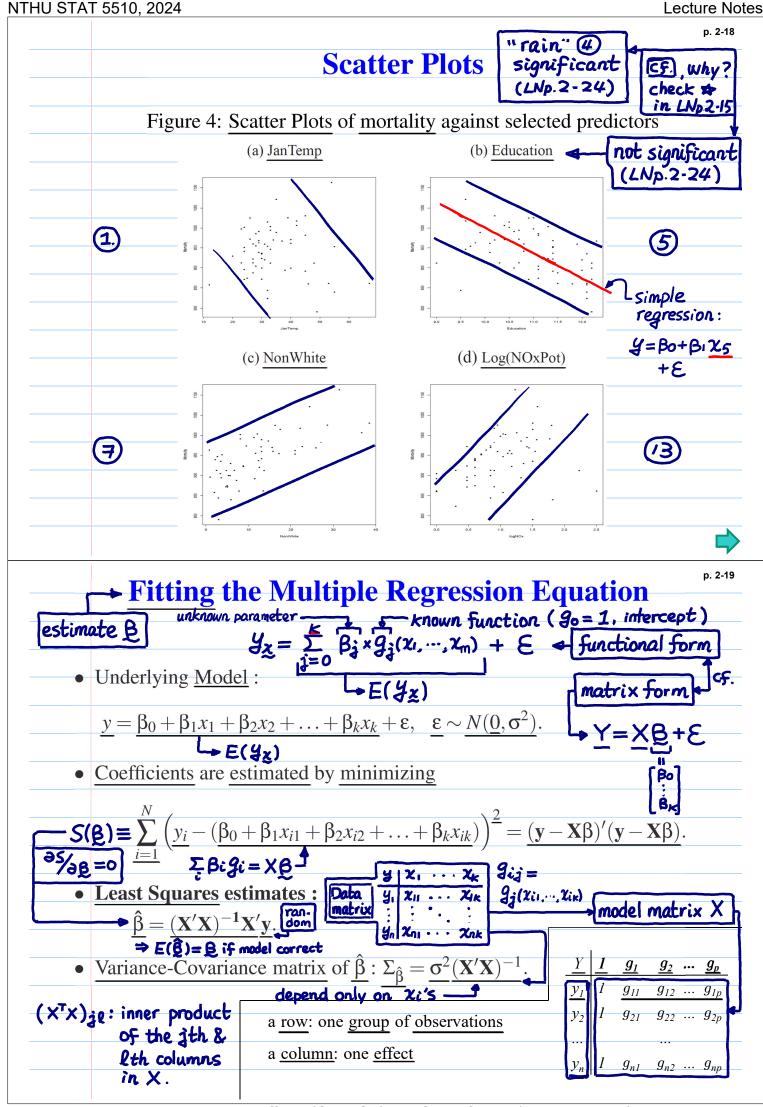
• Here $\underline{x_0 = 49}$, $1/N + (\bar{x} - \underline{x_0})^2 / \sum_{i=1}^{N} (x_i - \bar{x})^2 = \underline{0.1041}$, and

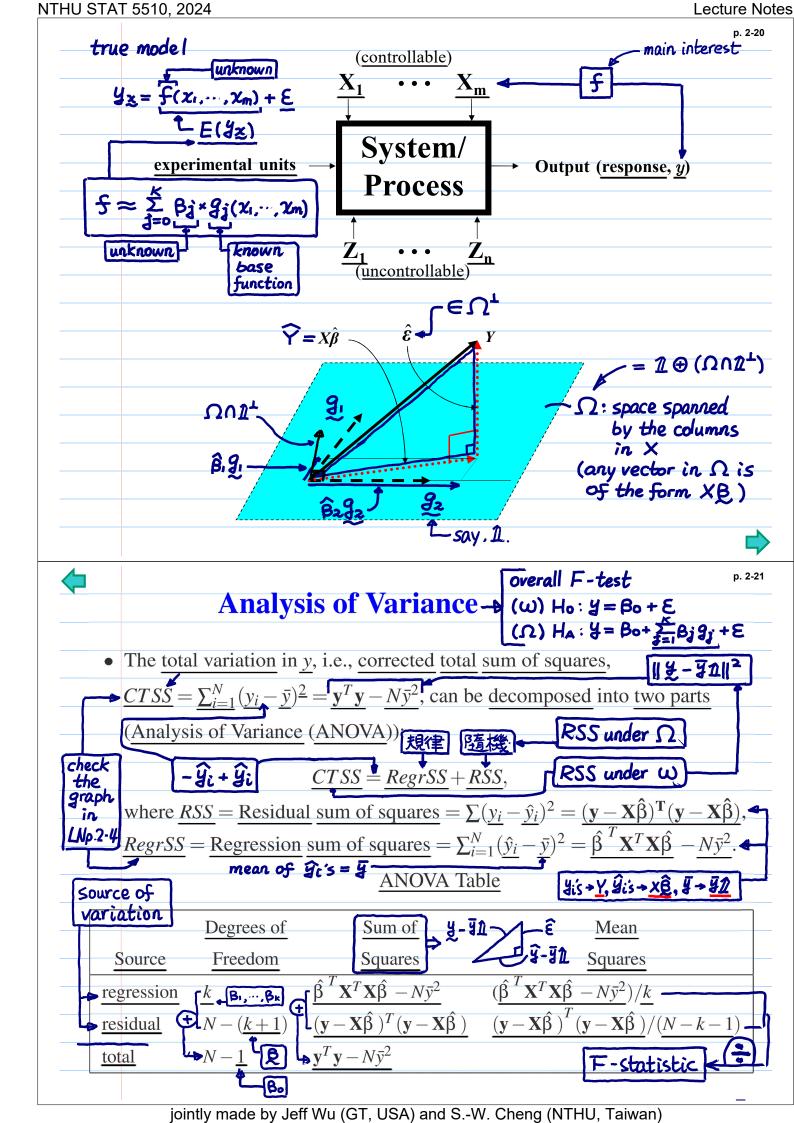
 $\hat{\sigma} = \sqrt{MSE} = 7.54$. Consequently, $\underline{s.e.}(\hat{\mu}_{x_0}) = 2.432$.

Note3. It converges to zero when

from \overline{x} ?







dfass

p. 2-22

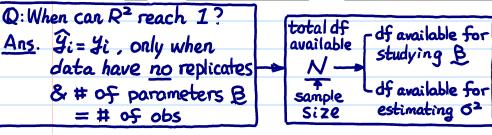
Explanatory Power of the Model

• $R^2 = \frac{RegrSS}{CTSS} = 1 - \frac{RSS}{CTSS}$ measures of the proportion of variation in y explained by the fitted model. R is called the multiple correlation coefficient.

 \uparrow cor($\underline{y},\underline{y}$) \leftarrow check the graph in LNp.2-20 • Adjusted R^2 :

$$\frac{R_{\underline{a}}^{2}}{\text{descreases}} = 1 - \frac{\frac{RSS}{N-(k+1)}}{\frac{CTSS}{N-1}} = 1 - \left(\frac{N-1}{N-k-1}\right) \frac{RSS}{CTSS} \cdot \leq R^{2}$$

• When an additional predictor is included in the regression model, R^2 always increases. This is not a desirable property for model selection. However, R_a^2 may decrease if the included variable is not an informative predictor. Usually R_a^2 is a better measure for comparing different model fits.



Want to have a final fitted model such that 1 # of parameters: Small 2. RSS: small

Testing significance of coefficients: t-Statistic

Examine whether Bj=0 when other effects Bis (gis), i = j, are still in the model

• To test the null hypothesis $H_0: \beta_i = 0$ against the alternative hypothesis Note. collinearity $H_A: \beta_j \neq 0$ under the <u>full model</u>, use the <u>test statistic</u>

$$H_A: \beta_j \neq 0 \text{ under the full model, use the test statistic} \qquad \underbrace{\text{Note. collinearity}}_{\text{rull model}}$$

$$t_j = \underbrace{\hat{\beta}_j - 0}_{\text{s.d.}(\hat{\beta}_j)} \qquad (\omega) \text{ Ho: } \mathcal{Y} = \beta_0 + \cdots + \beta_{j-1} \mathcal{Y}_{j-1} + \beta_{j+1} \mathcal{Y}_{j+1} + \cdots + \mathcal{E}}_{\text{alternative model}}$$

$$(\Omega) \text{ Ha: } \mathcal{Y} = \beta_0 + \underbrace{\overset{K}{=}}_{\text{i=1}} \beta_i \mathcal{Y}_i + \mathcal{E}}_{\text{outbound}}$$

$$\text{alternative model}$$
The higher the value of $|t_i|$ the more significant is the coefficient \mathcal{Y} rull dist.,

- The higher the value of $|t_j|$, the more significant is the coefficient. \leftarrow null dist., under Ho,
- In practice, if <u>p-value</u> is <u>less</u> then $\underline{\alpha} = \underline{0.05}$ or 0.01, H_0 is rejected.
- Confidence Interval: $100(1-\alpha)\%$ confidence interval for β_j is given by

$$\frac{\hat{\beta}_{j}}{\text{estimate}} \pm \underbrace{t_{N-(k+1),\frac{\alpha}{2}}}_{\text{critical value}} \times \underbrace{s.d.(\hat{\beta}_{j})}, \qquad \text{Ho: } \beta_{j} = \beta_{j}^{*}$$

$$\text{estimate}}_{\text{oritical value}} \times \underbrace{s.d.(\text{estimate})}_{\text{s.d.(estimate)}} \qquad \text{acceptance}}_{\text{tance}} \times \underbrace{\frac{\beta_{j} - \beta_{j}^{*}}{s.d.(\beta_{j})}}_{\text{s.d.(\beta_{j})}} \leq \underbrace{t_{N-(k+1),\frac{\alpha}{2}}}_{\text{s.d.(\beta_{j})}}$$

If the <u>confidence interval</u> for β_j does <u>not contain 0</u>, then $\underline{H_0}$ is rejected.

