Simple Linear Regression: Mortality Data

The data, taken from certain regions of Great Britain, Norway, and Sweden contains the mean annual temperature (in degrees F) and mortality index for neoplasms of the female breast.

response	Mortality rate (<i>M</i>)	102.5	104.5	100.4	95.9	87.0	95.0	88.6	89.2
predictor	Temperature (T)	51.3	49.9	50.0	49.2	48.5			
x	Mortality rate (<i>M</i>)	78.9	84.6	81.7	72.2	65.1	68.1	67.3	52.5
	Temperature (T)	46.3	42.1	44.2	43.5	42.3	40.2	31.8	34.0

一規律
Objective: Obtaining the relationship between mean annual temperature and the mortality rate for a type of breast cancer in women.

Website of my LM course

http://www.stat.nthu.edu.tw/~swcheng/Teaching/stat5410/

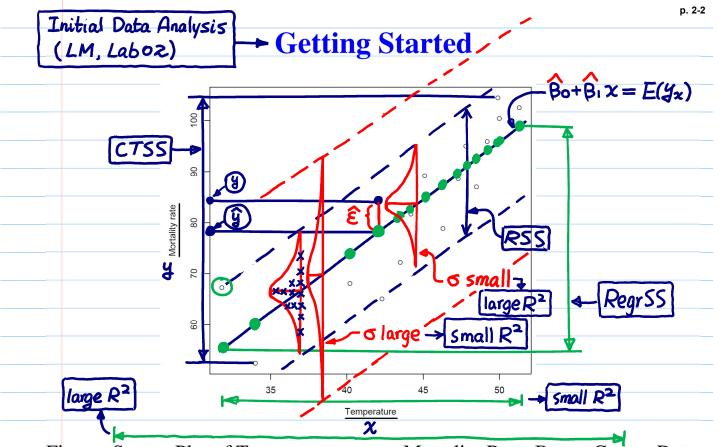


Figure: Scatter Plot of Temperature versus Mortality Rate, Breast Cancer Data.

p. 2-3

-not regarded as r.v., no measurement error

Underlying Model:

model
$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_n \end{bmatrix}$$

Tr.v.: random component

model $X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_n \end{bmatrix}$

The regarded as i.v., no measurement either the regarded as i.v

• Coefficients are estimated by minimizing

component

$$\begin{bmatrix} \frac{\partial}{\partial \beta_0} S(\beta_0, \beta_1) = 0 \\ \frac{\partial}{\partial \beta_1} S(\beta_0, \beta_1) = 0 \end{bmatrix} \longrightarrow \underbrace{\sum_{i=1}^{N} \left(y_i - (\beta_0 + \beta_1 x_i) \right)^2}_{i=1} = S(\beta_0, \beta_1)$$

• Least Squares Estimates

Least Squares Estimates

Estimated Coefficients:

$$\hat{\beta}_{1} = \frac{\sum (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum (x_{i} - \bar{x})^{2}} = \bar{\beta}_{1}, \quad var(\hat{\beta}_{1}) = \frac{\bar{\alpha}_{2}^{2}}{\sum (x_{i} - \bar{x})^{2}}, \quad var(\hat{\beta}_{0}) = \bar{\alpha}_{2}^{2} \left(\frac{1}{N} + \frac{\bar{x}^{2}}{\sum (x_{i} - \bar{x})^{2}}\right), \quad \bar{x} = \frac{1}{N} \sum x_{i}, \quad \bar{y} = \frac{1}{N} \sum y_{i}. \quad \text{Cov}(\hat{\beta}) = \bar{\alpha}_{2}^{2} (X^{T}X)^{-1}$$

$$\bar{x} = \frac{1}{N} \sum x_i$$
 , $\bar{y} = \frac{1}{N} \sum y_i$

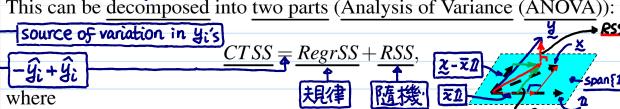
規律:?%,隨機:?%◆ **►**Explanatory Power of the Model-

Q: How well the model explain the data? "goodness of fit" measure

• The total variation in y can be measured by corrected total sum of squares

$$\frac{CTSS}{\text{Variation in Yi's}} = \sum_{i=1}^{N} (y_i - \bar{y})^2.$$

This can be decomposed into two parts (Analysis of Variance (ANOVA)):



source of χ_i 's $\rightarrow RegrSS = Regression sum of squares <math>= \sum_{i=1}^{N} (\hat{y}_i - \bar{y})^2 + \hat{\beta}_i^2 \sum_{i=1}^{N} (\chi_i - \bar{\chi})^2$

source of : Ei's — RSS = Residual sum of squares =
$$\sum_{i=1}^{N} (\underline{y_i} - \hat{y_i})^2$$
. # of §

 $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ is called the predicted value of y_i at x_i .

• $R^2 = \frac{RegrSS}{CTSS} = 1 - \frac{RSS}{CTSS}$ measures the <u>proportion</u> of <u>variation in y</u> explained by the fitted model. - check the graph in LNp. 2-2

 $\beta_{\hat{a}} = 0$

p. 2-7

p. 2-8

Zi

cov(1)=(I-H)52

hat matrix 3

Hii: leverage

tests Confidence Interval: collection of plausible &s

 $\underline{100(1-\underline{\alpha})\%}$ confidence interval for $\underline{\beta_j}$ is given by

$$\frac{\hat{\beta}_{j}}{\underbrace{t_{N-2,\frac{\alpha}{2}} \times s.d.(\hat{\beta}_{j}),}_{\text{critical value}}}$$

where $t_{N-2,\frac{\alpha}{2}}$ is the upper $\alpha/2$ point of the t distribution with N-2 degrees of freedom.

If the confidence interval for β_j does <u>not contain 0</u>, then $\underline{H_0}$ is <u>rejected</u>.

Acceptance
$$|t_{\vec{j}}| = \left| \frac{\widehat{\beta}_{\vec{j}} - \beta_{\vec{j}}^*}{s.d.(\widehat{\beta}_{\vec{j}})} \right| \le t_{df_{RSS}, \frac{\alpha}{2}}$$

$$\widehat{\beta}_{\widehat{J}} - t \times s.d.(\widehat{\beta}_{\widehat{J}}) \leq \widehat{\beta}_{\widehat{J}}^* \leq \widehat{\beta}_{\widehat{J}}^* + t \times s.d.(\widehat{\beta}_{\widehat{J}}) + (critical value) \times s.d.(estimate)$$

Predicted Values and **Residuals**

→y=ŷ+ê

LND.3-22

 $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ is the predicted value of y_i at x_i .

 $\begin{array}{c} \mathbf{r}_i = y_i - \hat{y}_i \text{ is the corresponding residual.} \\ \mathbf{\hat{\sigma}} = \frac{RSS}{n-P} \\ \end{array}$

• Standardized residuals are defined as $\frac{r_i}{s.d.(r_i)}$.

Plots of residuals are extremely useful to judge the "goodness" of fitted

model. under 2&3, & contains more information —under than error distribution

Normal probability plot (will be explained in Unit 3).

Residuals versus predicted values.

-under 989 $4 = f(x_1, \dots, x_m) + E$

Ê: carry information about 隨機· E (error dist., error variance)

ŷ: carry information about 規律于

Ŷi -

② overfitting: E→ŷ

3 lack of fit: f → ê

jointly made by Jeff Wu (GT, USA) and S.-W. Cheng (NTHU, Taiwan)