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Simple Linear Regression : Mortality Data

The data, taken from certain regions of Great Britain, Norway, and Sweden
contains the mean annual temperature (in degrees F) and mortality index for

neoplasms of the female breast.

Mortality rate (M) 102.5 1045 1004 959 870 950 88.6 89.2
Temperature (T') 51.3 49.9 50.0 492 485 478 473 451
Mortality rate (M) 78.9 84.6 81.7 722 65.1 68.1 673 525
Temperature (7) 46.3 42.1 442 435 423 402 31.8 34.0

Objective : Obtaining the relationship between mean annual temperature and

the mortality rate for a type of breast cancer in women.

Website of my LM course

http://www.stat.nthu.edu.tw/~swcheng/Teaching/stat5410/
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Getting Started
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Figure: Scatter Plot of Temperature versus Mortality Rate, Breast Cancer Data.
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Fitting the Regression Line

e Underlying Model :
y=Bo+PBix+e, e~N(0,6%).

e Coefficients are estimated by minimizing

i (ﬁ— (Bo+ Bm))g-

e Least Squares Estimates

Estimated Coefficients :

b= el = o

A - 1 %2
bomsbie vl =+ 5. )
1 1

S5 s =)

'@>

x
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Explanatory Power of the Model

e The total variation in y can be measured by corrected total sum of squares
CTSS = Zl 1 (i _)2.

e This can be decomposed into two parts (Analysis of Variance (ANOVA)):

CTSS = RegrSS + RSS,

where 4

___________________

RegrSS = Regression sum of squares = Z(& —3)%,

i=1 o

N
RSS = Residual sum of squares = Z( &)2

=1

Vi = BO + 61xi is called the predicted value of y; at x;.

2 _ RegrSS __ RSS
® R° = "5rs¢ = 1 — &pgg measures the proportion of variation in y explained

by the fitted model.
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ANOVA Table for Simple Linear Regression

ANOVA Table for Simple Linear Regression

Degrees of Sum of Mean
Source Freedom Squares Squares
regression 1 [32 (x; — %)? [32 (x; — %)?
residual N-2 YN i —9:)? %
total (corrected) N —1 YN i=9)?

ANOVA Table for Breast Cancer Example

Degrees of ~ Sum of Mean
Source Freedom Squares  Squares
regression 1 2599.53  2599.53
residual 14 796.91 56.92
total (corrected) 15 3396.44
p- 2-6
t-Statistic

e To test the null hypothesis Hy : B; = 0 against the alternative hypothesis
Hy : B # 0 under the full model, use the test statistic

lj = E‘L

= sd.(B))

e The higher the value of |¢;|, the more significant is the coefficient.

), E = degrees of

freedom for the ¢-statistic, #,,5 = observed value of the z-statistic. If p-value

e For 2-sided alternatives, p-value = Prob (ltd £ > |tobs

1s very small, then either we have observed something which rarely
happens, or Hy is not true. In practice, if p-value is less then oo = 0.05 or

0.01, Hy 1s rejected at level .
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Confidence Interval

100(1 — a)% confidence interval for B; is given by

&itN—Z,% xs.d.(B;),

where IN-2,¢ is the upper o/2 point of the ¢ distribution with N — 2 degrees of

freedom.

If the confidence interval for 3; does not contain 0, then Hj is rejected.
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Predicted Values and Residuals

y; = [30 + lel- is the predicted value of y; at x;.

e 1; =y; —y; 1s the corresponding residual.

Iy

s.d.(r,-) :

Standardized residuals are defined as

Plots of residuals are extremely useful to judge the “goodness™ of fitted

model.

— Normal probability plot (will be explained in Unit 3).

— Residuals versus predicted values.

— Residuals versus covariate x.
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Analysis of Breast Cancer Data

The regression equation is

M=-21.79 + 2.36 T

Predictor Coef SE Coef T P

Constant e il ) A5l =simeei 0.186

T 2.3577 0.3489 6.76 0.000

S = 7.54466 R-Sq = 76.5% R-Sqg(adj) = 74.9%

Analysis of Variance

Source DF SS MS F a=)
Regression 1 2599.5 2599.5 45.67 0.000

Residual Error 14 796.9 56.9

Total & o55) 3396.4

Unusual Observations

Obs T M Fit SE Fit Residual St Resid
15 31.8 67.30 53.18 4.85 14.12 2.44RX

R denotes an observation with a large standardized residual.

X denotes an observation whose X value gives it large leverage.
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Outlier Detection

Minitab identifies two types of outliers denoted by R and X:

R:its standardized residual (y; — $;)/se(¥;) is large.
X its X value gives large leverage (i.e., far away from majority of the X

values).

For the mortality data, the observation with T =31.8, M = 67.3 (i.e., left
most point in plot on LNp.2-2) is identified as both R and X.

After removing this outlier and refitting the remaining data, the output is
given on LNp.2-11. There is still an outlier identified as X but not R. This
one (second left most point on LNp.2-2) should not be removed (why?)

Residual plots on LNp.2-12 show no systematic pattern.

Notes: Outliers are not discussed in the book, see standard regression texts.

Residual plots will be discussed in unit 3.
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Regression Results after Removing the Outlier

The regression equation is

M=—52-62—+3-02—TF
Predictor Coef SE Coef T P
Constant -52.62 15.82 -3.33 0.005
T 3.0152 0.3466 8.70 0.000
S|=5.93258 R-Sg = 85.3% R-Sg(adj) = 84.2%
Analysis of Variance
Source DF SS MS P
Regression 1 2664.3 2664.3 75.70 0.000
Residual Error 13 457 35.2
Total 14 o e
Unusual Observations
Obs T M Fit SE Fit Residual St Resid
15 34.0 52.50 49.90 4.25 2.60 0.63 X
X denotes an observation whose X value gives it large leverage.
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Residual Plots After Outlier Removal

Residuals versus Fitted Values
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Figure 3: Residual Plots

Comments : No systematic pattern is discerned.

50
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Prediction from the Breast Cancer Data

The fitted regression model is Y = —21.79 4+ 2.36X, where Y denotes the
mortality rate and X denotes the temperature.

The predicted mean of ¥ at X = x( can be obtained from the above model.

For example, prediction for the temperature of 49 is obtained by substituting

xo = 49, which gives y,, = 93.85.

The standard error of iy, is given by

(X —x0)?
ILIXO 2
— i=1 (X, )C)

Here xg =49, 1/N + ( —x0)?/ Y& (x; — ¥)*> = 0.1041, and
6 = VMSE = 7.54. Consequently, s.e.(fL, ) = 2.432.
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Confidence interval for mean and

prediction interval for future observation

A 95% confidence interval for the mean response iy, = Bo + P1xo at x = xo is

Bo+PBixo + tn_00025 X s.e.(fly,).

Here the 95% confidence interval for the mean mortality corresponding to a
temperature of 49 is [88.63, 99.07].

A 95% prediction interval for an individual observation yy, corresponding to x = xg

1S

2

L. R 1 (X—xo)
Bo+Bixo £ ty_pp02s x 64/1 + —+ ,
N—2,U.U20 =\ = N Zz 1<Xl )2

where 1 under the square root represents 62, variance of the new observation Vg -

The 95% prediction interval for the predicted mortality of an individual

corresponding to the temperature of 49 is [76.85, 110.85].
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Multiple Linear Regression : Air Pollution Data

http://lib.stat.cmu.edu/DASL/Stories/AirPollutionandMortality.html

Data collected by General Motors.

Response is age-adjusted mortality.

Predictors :

— Variables measuring demographic characteristics.

— Variables measuring climatic characteristics.

— Variables recording pollution potential of 3 air pollutants.

Objective : To determine whether air pollution is significantly related to

mortality.
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Predictors

1. JanTemp : Mean January temperature (degrees Farenheit)

2. JulyTemp : Mean July temperature (degrees Farenheit)

RelHum : Relative Humidity

Rl I o

Rain : Annual rainfall (inches)
Education : Median education

PopDensity : Population density

NS @

% NonWhite : Percentage of non whites

8. % WC : Percentage of white collar workers

9. pop : Population

10. pop/house : Population per household

11. income : Median income
12. HCPot : HC pollution potential

13. NOxPot : Nitrous Oxide pollution potential

14. SO2Pot : Sulphur Dioxide pollution potential
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Getting Started

e There are 60 data points.

e Pollution variables are highly skewed, log transformation makes them

nearly symmetric. The variables HCPot, NOxPot and SO2Pot are replaced
by lo_g(HCPot), lo_g(NOxPot) and lo_g(SOZPot).

e Observation 21 (Fort Worth, TX) has two missing values, so this data point

will be discarded from the analysis.
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Scatter Plots

Figure 4: Scatter Plots of mortality against selected predictors

(a) JanTemp (b) Education

(c) NonWhite (d) Log(NOxPot)
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Fitting the Multiple Regression Equation

e Underlying Model :

Y= Bo+ Bix1 +Boxo+ ...+ Brxx +&, ENN(Q,Gz).

e Coefficients are estimated by minimizing

N 2
) (&— (Bo + Brxit + Poxip + ... + kaik))_ = (y—XB)'(y — XB).

i=1

Least Squares estimates :
B=(X'X)"Xly.

e Variance-Covariance matrix of [3 : Xy = o2 (X'X)~ 1. YL 9 9 9%
s Yill 9u i Jip
a row: one group of observations Y| 1 9ar 922 - 9y

a column: one effect
Yn 1 1 Gn2 - gnp

p. 2-20
(controllable)
Xl o o o Xm

System/

experimental units —» Output (response, y)

Process

Z o 0o o0 Z
Tlﬁncontrollable)_[L
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Analysis of Variance

e The total variation in y, i.e., corrected total sum of squares,

CTSS=YY (yi—9)2=y'y— Ny?, can be decomposed into two parts
(Analysis of Variance (ANOVA)):

CTSS = RegrSS + RSS,
where RSS = Residual sum of squares = ¥ (y; — §;)* = (y — XB)T(y — XPB),
~ T ~
RegrSS = Regression sum of squares = Y, i — 2)2 =B X'XB — Ny

ANOVA Table
Degrees of Sum of Mean
Source Freedom Squares Squares
regression  k B TXTXﬁ — Ny B TXTX[§ —Ny)/k
residual - N—(k+1) (y-XB)T(y-XB) (y-XB) (v—XB)/(N-k-1)
total N-1 y'y—Ny*
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Explanatory Power of the Model

2 _ RegrSS _ 1 RSS . .. .
® R° = "5rs¢ = | — Fpgg measures of the proportion of variation in y

explained by the fitted model. R is called the multiple correlation coefficient.

o Adjusted R*:

RSS
R S i L DI N-—1 RSS
—a Crss - \N—k—1)CTSS’

e When an additional predictor is included in the regression model, ﬁ always

increases. This is not a desirable property for model selection. However, Rﬁ
may decrease if the included variable is not an informative predictor.

Usually Ré is a better measure for comparing different model fits.
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Testing significance of coefficients : 7-Statistic

e To test the null hypothesis Hy : B; = 0 against the alternative hypothesis
Hy : B # 0 under the full model, use the test statistic

A

e The higher the value of |¢;|, the more significant is the coefficient.

e In practice, if p-value is less then o = 0.05 or 0.01, Hy is rejected.

o Confidence Interval : 100(1 — )% confidence interval for 3; is given by

/2 point of the ¢

Te far 7 1 o 1 ; ;
vl *N—k—1,5 - Ml

distribution with N — k — 1 degrees of freedom.

If the confidence interval for 3; does not contain 0, then Hy is rejected.
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Analysis of Air Pollution Data

Predictor Coef SE Coef T P
Constant 13327 2917 4.57 0.000
JanTemp —2.3052 0.8795 -2.62 0.012
JulyTemp -1.657 2.051 -0.81 0.424
RelHum 0.407 1.070 0.38 0.706
Rain 1.4436 0.5847 2.47 0.018
Educatio -9.458 9.080 -1.04 0.303
PopDensi 0.004509 0.004311 1.05 0.301
$NonWhit 5.194 1.005 5.17 0.000
SWC -1.852 1.210 -1.53 0.133
pop 0.00000109 0.00000401 0.27 0.788
pop/hous -45.95 39.78 -1.16 0.254
income -0.000549 0.001309 -0.42 0.677
logHC -53.47 35.39 -1.51 0.138
1ogNOx 80.22 32.66 2.46 0.018
logSo2 -6.91 16.72 -0.41 0.681
S = 34.58 R-Sq = 76.7% R-Sg(adj) = 69.3%

Analysis of Variance

Source DF SS MS - P
Regression 14 173383 12384 10.36 0.000
Residual Error 44 52610 1196

Total 58 225993




+ formulation of hypothesis testing from the view of comparing models P20

» a model space = the space spanned by columns of some X

» consider a large model space, Q, and a smaller model space, w, where w [] Q,
1.e., Wrepresents a subset/a subspace of Q. Suppose dimension (# of
parameters) of Q is p and dim(w)=g, where p>g.

» to answer “which of the model spaces is more adequate” in statistical language
= perform the test H,: @ v.s. H,: Q\w

(RSS, — RSSq) /(p—q)

~ Fy_gn—p (under w)

RSSq /(n—p)

» (sequential) ANOVA p. 2-26
» anova( y~ItA+B+A:B), A: 3 levels, B: 4 levels

1) test womodel 1 (y~1) against Q:model 2 (y~1+A4) [df,,— df5=2]
2) test wxmodel 2 (y~1+A4) against Q:model 4 (y~I1+A4+B) [df,,— dfo=3]
3) test wxmodel 4 (y~1+A4+B) against Q:model 5 (y~1+A4+B+A4:B) [df,,— df5=6]

o (RSS,, — RSSq)/(df., — dfq)
F — ~ Fdfw_dfﬂgdfmodel 5

RSSmodel 5/ model 5
o invariant to the choice of dummy variables since they generate same w and Q

» ANOVA could have different results when the order of effect sequence is
changed, e.g., anova( y~/+B+A+A:B):

a) test wxmodel 1 (y~1) against Q:model 3 (y~1+B) [df,,— dfo=3]

B) test wxmodel 3 (y~I+B) against Q:model 4 (y~1+B+A) [df,,— dfo=2]

X) test wmodel 4 (y~1+B+A4) against Q:model 5 (y~I+B+A4+A:B) [df,,— df5=6]
» anova(y~I+A+B+A:B) and anova(y~1+B+A+A:B) will have identical results

when orthogonality exists between the three groups of effects: spanjdiﬂ,
span{d/}, span{d;"®}, because in the case, RSS, — RSSg would equal for

1) and B), 2) and @), 3) and X)
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» consider the full model:
Yy =Bo+ Brgi(z1,..,Tm) + Bag2(T1, - s Tim) + -+ Brgr(T1,. .-, Tim) + €
For /<i<k, should the term Sg; be included in the final fitted model?

» (sub-)model: a model

Example: 6 effects, L Y. p. &. R T with a subset of all k
o terms, €.g.,
(F> s lisied with a {]’ gj’ gz},

{]a gza g4a g5> gk}a

» hierarchical structure
of all sub-models (see

graph)
I » p=#oftermsina
S e < sub-model
LSSt = # of different sub-
i woeT] [ mOdCISZZk
\- = ST A . .
"%;ié%‘(‘r‘:"ﬁ’;‘( . concrimlctmg.lme:
= i i model nesting
. p. 2-28
Orthogonality

* Q: consider the two models:
model 1: y= B,+Bx,+&, model 2: y= By+Lx; +Lx,+&

In general, ,é ;> Inthe 2 models are not identical | fitted model = model 1,
(of course, test H,: 5,=0 not identical neither) | true model = model 2

an exception: when x, and x, are orthogonal E(B1) =61+ (X X)X Xof3s

« Y=XB+e=X,6+X,5,+ €, where S5, B,]" and X=[X, X,] with the property
X;'X,=0 = X, and X, are orthogonal

(xIx,) 0
0 X5x,)
(X2X,)

XTX, 0
0 X5 X

T

T T
X1 X XiX
XXZ{]] 12}2

T T J — (XTX)_IZ
Xo X X2 X

A

« Estimation: f,=(X,"X)) XY, f,=(X,"X,) 'X,"Y, and ﬁ]’ﬁZ independent
= note that S, will be the same regardless of whether X is in the model or not
(and vise versa).

Q: what if only two predictors, say some x; in X; and some x; in X, are orthogonal?

» Randomization: In an exp’t, suppose that true model is Y= XB+Zyt+& but Z
cannot be measured or may not even be suspected = E(ff ) =fHX'X) "X Zy =

Q: what’s the best way of controlling X to make X and Z as orthogonal as possible?
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* (Generalization.

% Reading: Textbook, 1.4~1.6, 1.8
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Some Properties of (Multivariate) Normal Distribution

(N1) Linear transformation of normal 1s still normal

Z~N@E) = AZtc~N(Ap+tc AZAT),

(N2) When 1st and 2nd moments are given, the normal distribution is specified.

(N3) Z= {g—ﬂ ~ normal, and Z;, Z; uncorrelated (i.e., cov(Z,Z;) = 0)
= Z ,_Z; independent

(N4) Z~N(u,X), W, =A1Z, Wy, =A7Z
= W, W, are independent iff Al)lAg = 0.

(NS) Z~N(u,X), W, =AZ W, =A2Z, ... W,=AZ, and cov(W;,W;)=0
forl <i< j<k, = WITW1 ,Wng, W,ZW;C are mutually independent.

(N6) Z: an n x 1 random vector and Z ~ N(u,X), then
— if X is non-singular, (Z — W'E N Z—p~ Xi
— if X is singular and has rank r (< n),
let_Z_ be a generalized Megg (1.e., XX X =2X), then
(Z-w'E(Z-pw~x
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Normal Distribution and Sequential ANOVA

e Consider a linear modelZ = X_ﬁ +E, where

— Y € R": ann x | random vector and ¥ ~ N(XB, o°I)

-X=1 X o Xy R R N
T = XB=L Bt KB+ Xy
- ENE(Qa 6_21>
e Define
VJ_
— Vi = the vector space generated by the column vectors of i
A=|Xo Xi - Xl i=01,..k y 4

+ V; is called the model space of A;, and denoted by span{A;}
* Vogvlg---ng:span{X} C R"

— V- = orthogonal complement of the vector space V., le.,

vt = {v € R" : v is orthogonal to all the vectors in V'}
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— Wo =span{Xo} =Vy,andfori=1,... .k

=)

W; = orthogonal complement of V;_; relative to Vi (note: Vi C V), 1.e.,

Xo
X1

X0

V=B E W G W,
x RP=WodW D---pW, EBVkL (note: VkL 1s the residual space)
FWolWi Lo LWLV -

+ Note. In general, W; # w{&} However, if X, X1,..., X} are

mutually orthogonal, then W; = span{X}.
= i = dim(W) = dim(Vy) — dim (V).

* Letr= E ri= YK o dim(W;) = dim(Vy). Then, dim(V;-) =n—r.
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e Orthogonal projection of ¥ onto V;’s and W;’s

— For a vector space V C R”, denote the orthogonal projection matrix of ¥
onto V by Py. Then, the orthogonal projection of ¥ onto V is Py Y.

Y,
/ 7 % if V =span{A}, then Py =A(A'A)"'A"
FAdR / * the orthogonal projection matrix onto V_l,
denoted by Py, is Py =1 —A(ATA)"'1AT =1 Py

— Some properties of orthogonal projection matrix

I * A square matrix P is a projection matrix iff P? = P (idempotent)
- Idempotence implies P is a generalized inverse of P since
PPP=P’=P.

* A projection matrix P is orthogonal iff PT = P (symmetric)

* If P is an orthogonal projection matrix onto V, then

- P has dim(V) eigenvalues equal to 1 and the rest 0

- P is diagonalizable, and there exists an orthogonal matrix U
(UTU =1 such that UT PU = A is a diagonal matrix.
(Note. Thus, P = UAUT) Actually,
¢ the columns of U are orthonormal eigenvectors of P, and

o the diagonal entries of A are the eigenvalues of P
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— Since V, =span{A;}, Py, = A;(A]A)) 'A] and PyY = A;(A]A;)"'A]Y

s/~ * For the model space V,,

LTRSSy, = | Y|P~ [Py P =XTY — (PyY) PyY =YY — YT PLP,Y
= Y'Yy -Y'Py=Y'(I-P))Y =|I-PY|

- Simce%:V_,‘(ﬂ/i_l;1 and V,_; CV,,

Py, = (I—Py_ )Py, =Py, —Py_ Py =Py, —Py_,

and PyY = (I—Py_)PyY=(Py,—Py_ )Y=PyY—Py Y.

x Since R"=Wo oW1 @ oW,V and Wy LWy L --- LW LV,
Y = PyY + PyY + - + Py Y + P, ¥
- Py¥Y L PwY L - L PyY L P,Y

2 2 ;12 2
Y = 1Pw X [I” + [[Pw Y™+ - + [P Y|+ Py, Y|
x When Xo,X1,..., X are mutually orthogonal,

Py =Py — Py  =X;(X'X;)"'xT.




e Consider the sequential ANOVA: fori=1,...,k, P
H B, =0 (@ =V1) vs. H(-) B, #0 (=W
(P1) RSSw, —RSSq, =RSSy,_ | —RSSy, =Y'(I—Py_ )Y —Y'(I-Py)Y
=Y (Py,—Py_)Y=Y'PyY=Y" TPT Py, Py PyY = [Py Y >
and d fy, —dfo, —d1m(W) =Ti.
(P2) PyY = PW_ﬁJr Py,€, where
— PyXB = (Py,—Py_)(XoBo+--+Xi 1B s +XiB; + -+ XsBy)
= (Py,—Py_)(X:B; +- -+ XiBy) = P, (i + -+ + uy)
x If Xo,X1,...,X are mutually orthogonal,
Py XB = Pyu; = (Xi(X[ X)) 'XD)XB, = XiB, = ;.
— Py, ~ N(0, 6>Py, IPy, ), where Py, IPy, = Py, and Py, = Py.
~ Thus, PwY ~ N(Py,(u: +--- + ), *Py;,)
(P3) |PwY|* =Y"PwY = (XB+€)" Pw,(XB+¢)
— (XB)” Pw.(XB) +2(XB) Pwe+ &' Pye
= |PwXB|* +2(XB)" Pw,e+&" Pye,

where eTme = &’ Py, Py, Py,e = 6*(Py,€)" (Py,/c*)(Py,e) Nizxé
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(P4) E(RSSy_, —RSSy,) =E(Y'PwY)=E(|PwY|?)
= |[PwXB|* +2(XB)" Pw,E(g) + E(e" P )
= || Py (Ui + -+ uwp)||> + ri6*
— Note. If M: a symmetric matrix, and Z ~ N(u,X), then
E(Z_TMZ) =y’ My + trace(MX).
(P5) For the residual space V_kl,
- RSy =Y'(I-Py)Y =Y'P,.¥ = |P,.¥|?

i

- P, Y =P, XB+P,e=P, & ~ NO P,

k

y 20,2
- P YIP=€'P, e ~ O,
- E(RSSy) =E(IP, Y| = (1—r)g?
(P6) Since Wo LWy L --- LW, LV,
éP_%Z,...,P_MZ,PYéZ are
independent random vectors
= HPW()YH27“'7HPW1<YH27 HPVleH2

are independent random variables

% Further reading: Seber and Lee (2003), Linear Regression Analysis, 2" edition, Chapter 2.




