(1, 3pts) There are 24 whole-plot experimental units (replications) and 48 sub-plot experimental units (repetitions). Both M and T are whole-plot factors. So, the ANOVA table should look like:

Source	d.f.	SS	MS
M	3		
T	2		
$M \times T$	6		
Whole-plot error	12		
Sub-plot error	24		
Total	47		

- (2, 2pts) response ~ $M + T + M \times T + \epsilon^{WP} + \epsilon^{SP}$, where ϵ^{WP} is a 48 × 1 vector with 24 distinct whole-plot errors, and ϵ^{SP} a 48 × 1 vector with 48 distinct sub-plot errors.
- (3, 4pts) Because $E(\text{sub-plot-error MS}) = \sigma_S^2$, where σ_S^2 is the variance of sub-plot errors, the estimate of the sampling error variance component due to repetitions (i.e., 1) can be treated as the sub-plot-error MS. So, the ANOVA table is:

Source	d.f.	\mathbf{SS}	MS
M	3	60	20
T	2	50	25
$M \times T$	6	30	5
Whole-plot error	12	58.8	4.9
Sub-plot error	24	24	1
Total	47	222.8	

- (4, 2pts) The $M \times T$ interaction is a whole-plot effect, so it must be tested against whole-plot error MS. The test statistic is 5/4.9 = 1.02, and the null distribution is an $F_{6,12}$ whose mean is 1.2. Because 1.02 < 1.2, we do not reject the null of no $M \times T$ interaction.
- (5, 3pts) For a main-effect-only (i.e., no interaction) model, the ANOVA table becomes:

Source	d.f.	SS	MS
M	3	60	20
T	2	50	25
Whole-plot error	18	88.8	4.933
Sub-plot error	24	24	1
Total	47	222.8	

So, the standard error is

$$\sqrt{\frac{1}{n} + \frac{1}{n}} \times \sqrt{\text{whole-plot-error MS}} = \sqrt{\frac{2}{48/3}} \times \sqrt{4.933} \approx 0.785,$$

where n = 48/3 = 16 is the number of observations of a treatment. The whole-plot-error MS is used in the calculation because T is a whole-plot effect. An alternative way to derive

the answer is given below. For treatments A and B,

$$Var(\bar{y}_A - \bar{y}_B) = Var(\bar{y}_A) + Var(\bar{y}_B) = 2 \times Var(\bar{y}_A)$$
$$= 2 \times \frac{1}{(48/3)^2}$$
$$\times Var[2 \times (\text{sum of 8 whole-plot errors}) + (\text{sum of 16 sub-plot errors})]$$
$$= 2 \times \frac{1}{16^2} \times (4 \times 8\sigma_W^2 + 16\sigma_S^2) = 2 \times \frac{1}{16} \times (2\sigma_W^2 + \sigma_S^2)$$

where σ_W^2 and σ_S^2 are the variances of whole-plot and sub-plot errors respectively. Because $E(\text{whole-plot-error MS}) = 2\sigma_W^2 + \sigma_S^2$, we can use whole-plot-error MS as an unbiased estimate of $2\sigma_W^2 + \sigma_S^2$.

- (6, 2pts) In the defining contrast subgroup of d_1 , only the words 459, 4678, and 56789 are composed of factors 4, 5, 6, 7, 8, 9. So, the defining contrast subgroup of the projected design is I = 459 = 4678 = 56789, which is a 2_{II}^{6-2} design.
- (7, 1pt) No, because all the main effects appear in at least one word of length 3. Any main effects is aliased with at least one 2-factor interaction.
- (8, 2pts) The main effect 9 has a more serious aliasing than the other main effects because the former is aliased with *four* 2-factor interactions while any of the latter is aliased with only *one* two-factor interaction.
- (9, 2pts) The defining contrast subgroup of D_1 can be obtained from that of d_1 by removing all the words involving 5. The resolution of D_1 is III because a word like 369 (or 279, 189) is still retained in its defining contrast subgroup.
- (10, 2pts) The words of length three in the defining contrast subgroup of D_1 are 369, 279, 189. The clear main effects are 4 and 5. All the 2-factor interactions involving 5 are clear because there is no three-letter or four-letter words involving 5 in the defining contrast subgroup of D_1 .
- (11, 3pts) Yes, it is achievable. To make all main effects clear, the resolution must be at least IV. That is, the fold-over design (the 2nd design) must have negative signs on all the length-three words. This can be achieved by switching the signs in every columns of d_1 (i.e., $1 \rightarrow -1$, $2 \rightarrow -2, \ldots, 9 \rightarrow -9$) to generate the fold-over design. The resulting augmented design by combing d_1 and the fold-over design would have a defining contrast subgroup containing only the even-length words in the defining contrast subgroup of d_1 . In this case, the augmented design would be a resolution IV design.
- (12, 2pts) Treat x_F as a random variable and assign probability 1/2 on each of the levels -1 and +1 of x_F . Then, we have $E(x_F) = 0$ and $Var(x_F) = 1$. The location model can be derived by

$$E_{x_F}(y) = E_{x_F}(7.64 + 0.11x_A - 0.09x_B + 0.05x_C - 0.13x_F + 0.08x_Bx_F)$$

= 7.64 + 0.11x_A - 0.09x_B + 0.05x_C - 0.13E_{x_F}(x_F) + 0.08x_BE_{x_F}(x_F)
= 7.64 + 0.11x_A - 0.09x_B + 0.05x_C. (I)

(13, 3pts) Treat x_F as a random variable and assign probability 1/2 on each of the levels -1 and +1 of x_F . Then, we have $E(x_F) = 0$ and $Var(x_F) = 1$. The transmitted variance model

(i.e., the dispersion model) can be derived by

$$Var_{x_F}(y) = Var_{x_F}(7.64 + 0.11x_A - 0.09x_B + 0.05x_C - 0.13x_F + 0.08x_Bx_F)$$

= $Var_{x_F}[-(0.13 - 0.08x_B)x_F]$
= $(0.13 - 0.08x_B)^2 Var_{x_F}(x_F)$
= $(0.13 - 0.08x_B)^2 = 0.0169 - 0.0208x_B + 0.0064x_B^2 = 0.0233 - 0.0208x_B,$

where the last equality holds because $x_B^2 = 1$.

(14, 3pts) We start by minimizing the dispersion model $Var_{x_F}(y)$ to determine the value of x_B to be set at +1. Substituting $x_B = +1$ into the location model $E_{x_F}(y)$, we obtain

$$E(y) = 7.55 + 0.11x_A + 0.05x_C.$$

In the above equation, all (x_A, x_C) combinations that satisfy E(Y) = 7.6, such as $(x_A, x_C) = (5/11, 0)$, are valid settings to consider. Notice that it is preferable to choose settings that fall within the experimental region.

- (15, 2pts) To simultaneously estimate all these effects, both the resolutions of the control array and the noise array needs to be at least V. For the control array, since there are only 4 control factors, to achieve resolution $\geq V$, only a 2⁴ full factorial design can be used. Similarly, for the noise array, with only 2 noise factors, to achieve a resolution $\geq V$, only a 2² full factorial design can be used. Therefore, the entire cross array is a 2⁴ × 2² = 2⁶ full factorial design with 64 runs.
- (16, 2pts) To simultaneously estimate all these effects, the resolution of the single array needs to be at least V. For 6 factors and 32 runs, a 2^{5-1} fractional factorial design can be used, which requires one generator. We can choose a word of length 5 as the generator, such as I = ABCDE, or a word of length 6, such as I = ABCDEF. Both of them have a resolution \geq V, ensuring that all main effects and two-factor interactions are clear. Therefore, all the effects of interest can be simultaneously estimated using these single arrays.
- (17, 2pts) Among all the 2^{6-1} FFDs with resolution at least V, the generator with the longest wordlength is *ABCDEF*. The generators for the other FFDs are words of length 5. Therefore, the FFD with I = ABCDEF is the minimum abberation design.