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• Recall: Y=Xβ +ε, usually assume error ε is Normal  ordinary least square (OLS) 

approach best. Q: what if error not Normally distributed?

• Recall: particular concern when errors not Normal  long-tailed error

 large errors are expected to appear more often

 OLS not necessary best when large errors exist (Q: why?                                    ) 

 Previous approach: check and remove observations with large residuals, i.e., 

regard them as outliers, use OLS after removing them 

 not effective when there are many outliers because:

 “leave-out-one” nature in outlier tests

 not statistically efficient for the estimation of β
 Two ways of handling outliers or large errors: 

(a) change data, keep model (b) keep data, change model

• Statistical modeling: Y=Xβ +ε, where error ε can be modeled as

 ε ~ a mixture distribution, e.g., 

ε ~ π N(0, σ2) + (1−π) N(0, c σ2), 0<π<1 and c>1

 ε ~ σ td distribution with a small d

 ε ~ any distribution with median=0

Robust regression

t5 (long dash), t10 (short dash), 

t30 (dot), N(0,1) (solid)

p. 10-2• alternative approach: robust regression (observations are weighted unequally)

 M-estimators: find β to minimize Σi ρ((yi−xi
Tβ)/σ)

 choice of ρ :

 ρ(z) = z2 is OLS

 ρ(z) = |z| is called least absolute deviations (LAD) regression

 Huber method: ρ(z) = z2, if |z|≤c, and 2c|z|−c2, if |z|>c. 

It's a compromise between OLS and LAD.

[Q: how to pick c? suggestion: c∈[1, 2] ]

 many other choices, such as Tukey's biweight, Hampel, ...

 compute M-estimates (related to iteratively re-weighted least square, IRWLS):

 for LS with weights, estimate β by solving (XTWX)β=XTWY 

 XTW(Y−Xβ)=0, i.e., Σi wi xij (yi−Σk xikβk) = 0    for all j=1,...,p

 let ui = (yi−Σk xikβk)/σ, we get Σi (ρ'(ui)/ui) xij (yi−Σk xikβk) = 0 

 set wi = ρ'(ui)/ui, can use WLS to estimate β
 but, ui depends on the residuals ← ← wi ← ui ← ←  …
 IRWLS

 for robust estimates, differentiating the M-estimate

criterion w.r.t. βj and setting to zero, we get: 

Σi ρ'((yi−Σk xikβk)/σ) xij = 0 for all j=1,...,p

β̂εiˆ εiˆ
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εiˆ εiˆ

 weights for various ρ [note: larger residuals cause 

smaller weights in robust method]

 OLS: w(u)=2 is a constant

 LAD: w(u)=1/|u| --- note the asymptote at 0, it may 

make a weighting approach difficult

 Huber: w(u)=2, if |z|≤c, and 2c/|u|, if |z|>c.

 procedure: IRWLS for M-estimator

(1) start with any estimate of β, say OLS

(2) compute residuals 

(3) compute ui, may use median | −median(    ) | /0.6745 to estimate σ
(4) compute wi = ρ'(ui)/ui

(5) do WLS to get a new estimate of β, 

then go to step (2) until converge

εiˆ

 =
q

1i

 resistant regression (more resistant to outliers than M-estimators):

 least trimmed squares (LTS): 

find β to minimize | yi-xi
Tβ |2(i) , 

where (i) indicates sorting, and q<n [q≈(n+p+1)/2 is recommended]

 least median of squares (LMS): find β to minimize median | yi-xi
Tβ |2
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• Q: Why not always use robust estimates?

 if errors are (close to) normally distributed, robust estimators are less efficient

 very little distribution theory for robust estimator: can estimate β and (possibly) 

their standard errors, but, methodology and software for inference, such as 

testing, is not easy to come by. [ may try bootstrap method]

 recommendation: use robust estimates as a check on OLS estimates. If they are 

close, use OLS theory. If not, try to find out why. 

 Reading: Faraway (1st ed.), 6.4,  Further reading: D&S, chapter 25

 β estimated by S-estimation method. [see Rousseeuw and Leroy, 1987]

• Note: robust estimators provide protection against long-tailed errors, but they cannot 

overcome problems with non-constant variance or curvature in the mean of residuals.

 quantile regression

 resistant regression will do well even if a substantial 

proportion of data is “bad” (see an example in Lab)

Incomplete data

• Some values of some cases are missing. Q: When this happened, what can be done?

 find them --- may not be possible
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 ask why the data are missing, i.e., what is the missing mechanism?

 missing completely at random (MCAR): missing probability 

is the same for all cases  non-informative missing

 missing at random (MAR): missing probability is 

not constant, but depends on a known mechanism, 

say some observed variables T non-informative 

missing if T are included in the model

 missing not at random (MNAR): missing probability

is not constant, and depends on some 

unknown mechanism  informative missing, e.g.:

 People having something to hide are 
typically less likely to provide information 

 Patients drop out a drug study more often
when they feel treatment is not working

MNAR data require special assumptions and 

modeling [see Little and Rubin, 2019] 

Analyses without considering the information 

in missingness may cause biased conclusion. 

Sampled cases

Sampled cases

T = t1

T = t2

T = tk

 approach 1: deletion, i.e., ignore and delete cases with missing value

 no bias but lose information. It is OK if % of missing data is small.

• some fix-up methods for non-informative missing
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 use a regression model to predict xi using other predictors, 

 how much trouble to take in building these models? 

 may be difficult with multiple missing values

 cause some bias, but filled-in case will have lower leverage

 Q: Is inference valid after estimating the coefficients?

 approach 2: single imputation (SI), i.e., fill-in or impute a missing value, e.g.,

 approach 3: multiple imputation (MI), i.e., impute a missing value

m times by multiple draws from predictive distribution

 replace missing value by average of predictor, 

often causing a bias of β toward 0.

 A SI value tends to be less variable than the missing value

because the imputed value does not include the error variation.

 MI re-includes error variation, which reflects uncertainty about 

imputed values and yields valid estimates of standard errors.

 MI may better mitigate bias

 Let       and sij be the estimate and standard error of the 

coefficient βi of xi for the jth imputed result, j = 1, …, m. 
ijβ̂

 The combined estimate of βi is: 
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approach 4: maximum likelihood method

 Reading: Faraway (1st ed.), chapter 12; W, 5.6 

 The combined standard errors si of is given by: 

where               is the (unbiased) sample variance over the imputed     ’s .
ijβ̂

 (if available) the likelihood of θ based on Dobs : 

Assuming complete data D = (Dobs, Dmis), both observed and missing, are 

from a family of distribution with parameters θ, say multivariate normal, 

then it is possible to compute maximum likelihood estimates using:

 the EM algorithm

But, 

 the distribution assumption might 

not be tenable

 tests, inferences, and diagnostics

are not easy to come by


