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• Recall: Y=Xβ +ε, usually assume error ε is Normal  ordinary least square (OLS) 

approach best. Q: what if error not Normally distributed?

• Recall: particular concern when errors not Normal  long-tailed error

 large errors are expected to appear more often

 OLS not necessary best when large errors exist (Q: why?                                    ) 

 Previous approach: check and remove observations with large residuals, i.e., 

regard them as outliers, use OLS after removing them 

 not effective when there are many outliers because:

 “leave-out-one” nature in outlier tests

 not statistically efficient for the estimation of β
 Two ways of handling outliers or large errors: 

(a) change data, keep model (b) keep data, change model

• Statistical modeling: Y=Xβ +ε, where error ε can be modeled as

 ε ~ a mixture distribution, e.g., 

ε ~ π N(0, σ2) + (1−π) N(0, c σ2), 0<π<1 and c>1

 ε ~ σ td distribution with a small d

 ε ~ any distribution with median=0

Robust regression

t5 (long dash), t10 (short dash), 

t30 (dot), N(0,1) (solid)

p. 10-2• alternative approach: robust regression (observations are weighted unequally)

 M-estimators: find β to minimize Σi ρ((yi−xi
Tβ)/σ)

 choice of ρ :

 ρ(z) = z2 is OLS

 ρ(z) = |z| is called least absolute deviations (LAD) regression

 Huber method: ρ(z) = z2, if |z|≤c, and 2c|z|−c2, if |z|>c. 

It's a compromise between OLS and LAD.

[Q: how to pick c? suggestion: c∈[1, 2] ]

 many other choices, such as Tukey's biweight, Hampel, ...

 compute M-estimates (related to iteratively re-weighted least square, IRWLS):

 for LS with weights, estimate β by solving (XTWX)β=XTWY 

 XTW(Y−Xβ)=0, i.e., Σi wi xij (yi−Σk xikβk) = 0    for all j=1,...,p

 let ui = (yi−Σk xikβk)/σ, we get Σi (ρ'(ui)/ui) xij (yi−Σk xikβk) = 0 

 set wi = ρ'(ui)/ui, can use WLS to estimate β
 but, ui depends on the residuals ← ← wi ← ui ← ←  …
 IRWLS

 for robust estimates, differentiating the M-estimate

criterion w.r.t. βj and setting to zero, we get: 

Σi ρ'((yi−Σk xikβk)/σ) xij = 0 for all j=1,...,p

β̂εiˆ εiˆ
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εiˆ εiˆ

 weights for various ρ [note: larger residuals cause 

smaller weights in robust method]

 OLS: w(u)=2 is a constant

 LAD: w(u)=1/|u| --- note the asymptote at 0, it may 

make a weighting approach difficult

 Huber: w(u)=2, if |z|≤c, and 2c/|u|, if |z|>c.

 procedure: IRWLS for M-estimator

(1) start with any estimate of β, say OLS

(2) compute residuals 

(3) compute ui, may use median | −median(    ) | /0.6745 to estimate σ
(4) compute wi = ρ'(ui)/ui

(5) do WLS to get a new estimate of β, 

then go to step (2) until converge

εiˆ

 =
q

1i

 resistant regression (more resistant to outliers than M-estimators):

 least trimmed squares (LTS): 

find β to minimize | yi-xi
Tβ |2(i) , 

where (i) indicates sorting, and q<n [q≈(n+p+1)/2 is recommended]

 least median of squares (LMS): find β to minimize median | yi-xi
Tβ |2
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• Q: Why not always use robust estimates?

 if errors are (close to) normally distributed, robust estimators are less efficient

 very little distribution theory for robust estimator: can estimate β and (possibly) 

their standard errors, but, methodology and software for inference, such as 

testing, is not easy to come by. [ may try bootstrap method]

 recommendation: use robust estimates as a check on OLS estimates. If they are 

close, use OLS theory. If not, try to find out why. 

 Reading: Faraway (1st ed.), 6.4,  Further reading: D&S, chapter 25

 β estimated by S-estimation method. [see Rousseeuw and Leroy, 1987]

• Note: robust estimators provide protection against long-tailed errors, but they cannot 

overcome problems with non-constant variance or curvature in the mean of residuals.

 quantile regression

 resistant regression will do well even if a substantial 

proportion of data is “bad” (see an example in Lab)

Incomplete data

• Some values of some cases are missing. Q: When this happened, what can be done?

 find them --- may not be possible
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 ask why the data are missing, i.e., what is the missing mechanism?

 missing completely at random (MCAR): missing probability 

is the same for all cases  non-informative missing

 missing at random (MAR): missing probability is 

not constant, but depends on a known mechanism, 

say some observed variables T non-informative 

missing if T are included in the model

 missing not at random (MNAR): missing probability

is not constant, and depends on some 

unknown mechanism  informative missing, e.g.:

 People having something to hide are 
typically less likely to provide information 

 Patients drop out a drug study more often
when they feel treatment is not working

MNAR data require special assumptions and 

modeling [see Little and Rubin, 2019] 

Analyses without considering the information 

in missingness may cause biased conclusion. 

Sampled cases

Sampled cases

T = t1

T = t2

T = tk

 approach 1: deletion, i.e., ignore and delete cases with missing value

 no bias but lose information. It is OK if % of missing data is small.

• some fix-up methods for non-informative missing
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 use a regression model to predict xi using other predictors, 

 how much trouble to take in building these models? 

 may be difficult with multiple missing values

 cause some bias, but filled-in case will have lower leverage

 Q: Is inference valid after estimating the coefficients?

 approach 2: single imputation (SI), i.e., fill-in or impute a missing value, e.g.,

 approach 3: multiple imputation (MI), i.e., impute a missing value

m times by multiple draws from predictive distribution

 replace missing value by average of predictor, 

often causing a bias of β toward 0.

 A SI value tends to be less variable than the missing value

because the imputed value does not include the error variation.

 MI re-includes error variation, which reflects uncertainty about 

imputed values and yields valid estimates of standard errors.

 MI may better mitigate bias

 Let       and sij be the estimate and standard error of the 

coefficient βi of xi for the jth imputed result, j = 1, …, m. 
ijβ̂

 The combined estimate of βi is: 
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approach 4: maximum likelihood method

 Reading: Faraway (1st ed.), chapter 12; W, 5.6 

 The combined standard errors si of is given by: 

where               is the (unbiased) sample variance over the imputed     ’s .
ijβ̂

 (if available) the likelihood of θ based on Dobs : 

Assuming complete data D = (Dobs, Dmis), both observed and missing, are 

from a family of distribution with parameters θ, say multivariate normal, 

then it is possible to compute maximum likelihood estimates using:

 the EM algorithm

But, 

 the distribution assumption might 

not be tenable

 tests, inferences, and diagnostics

are not easy to come by


