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• Recall: Y=Xβ +ε, where ε is error that represent measurement error or unexplained 

variation in Y, and “it’s assumed that X are fixed values measured without error.”

• Q: what if X are measured or observed with error? (examples)

Note: compare the difference between the 2 statements: "X measured with errors" 

and "X are random variables, such as in sampling model"

• Q: what happens if you ignore errors in X and still use 

OLS estimator? Let us consider a simple example:

 Q: Is minimizing RSS (i.e., OLS) still reasonable for ∆ data?

×: "fine" value, no error in predictor

and response, but not observed

○: observations with error only in 

response, but not error in predictor

∆: observations with error in both 

response and predictor

Errors in the predictor

 a statistical model for ∆ data: 

ideal "true" relationship is ηi=β0+β1ξi , 

but observe yi=ηi+εi and xi=ξi+δi, 

where ε and δ are errors of response and predictor respectively, i.e., 

yi=β0+β1ξi+εi=β0+β1xi+(εi-β1δi)

×: (ξi, ηi)

○: (ξi, yi)

∆: (xi, yi)

p. 9-8
 Q: what problem if we use ordinary least square to estimate β1 in the model?

 Let's assume E(εi)=E(δi)=0, var(εi)=σ2, var(δi)=σδ
2 and cov(ε ,δ)=0

 Let σξ
2=Σ(ξi - )2/n (Note: when ξi’s are not random, we could regard it as a 

measure of the spread of the predictor), σξδ=cov(ξ ,δ) and assume cov(ξ ,ε)=0

 the OLS estimator of β1 is:

. = [Σ(xi - )(yi - )]/ Σ(xi - )2

 after some calculation, we can write

E(     ) ≈ β1 × [( σξ
2+σξδ )/( σξ

2+σδ
2+2σξδ )]

 if no relation between ξ and δ (i.e., cor(ξ ,δ)=0), 

E(     ) ≈ β1 ×[σξ
2 /(σξ

2+σδ
2)] = β1 ×[1/(1+σδ

2/σξ
2)]  is biased

ξ

β
1

ˆ

β
1

ˆ β
1

ˆ

 typically, bias in        is towards zero

 size of the bias depends mainly on the ratio σδ
2/σξ

2 (i.e., variability in the 

errors of predictor relative to the spread of predictor)       (Q: why reasonable?)

 ratio is small  no worry

 ratio is large,         is underestimated  use measurement error model

• For multiple predictors, the usual effect of measurement errors on predictors is to 

bias the estimator of β in the direction of zero

• Prediction is not biased since future X will also be measured with errors. 

So, model for prediction should be built on X's measurement with error.

β
1

ˆ

 Reading: Faraway (1st ed.), 5.1; W, 4.6.3  Further reading: D&S, 3.4, 9.7

xβ
1

ˆ xy
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• collinearity: predictors are (linearly) related to each other

 XTX is singular  some predictors are linear combinations of others

 (exact) collinearity  no unique estimate of β
 XTX close to singular  close to linear dependent among some predictors

 (approximate) collinearity or multicollinearity

• effect of collinearity:

 estimated effects are unstable (can change magnitude or sign depending on the 

other predictors in the model)  interpretation of estimated coefficients difficult

 cause numerical problem in estimating β and associated quantities

 var(    ) = σ2 (1/(1-Rj
2)) (1/Sj), where Sj = Σi (gij- )2 and Rj

2 is the coefficient of

determination obtained from regressing gj on all other predictors  when Rj
2≈1, 

var(    ) large  t-test may fail to reveal significance, i.e., miss important gj

 variance inflation factor: VIFj = 1/(1-Rj
2)  when Sj is fixed, VIFj represents the 

increase in variance due to the collinearity (e.g., interpret VIFj=16?)

β̂
j

g j

Collinearity

β̂
j

• detection of collinearity:

 examine correlations between predictors, i.e., cor(gk, gj)

 any values close to 1 or –1 reveal pairwise correlation

 for each gj, regress gj on all other predictors and compute Rj
2 or VIFj

 Rj
2 close to one or VIFj much larger than one indicate a problem of collinearity

p. 9-10

 examine eigenvalues, λ1≥…≥λp, of XTX  small eigenvalues indicate a problem

 condition number: k=(λ1/λp)
1/2

 rough rule: k > 30 is considered large

 for each i, (λ1/λi)
1/2 are worth considering  there may exist more than one

linear combination relationship between predictors

 eigenvectors of small eigenvalues indicate possible source of collinearity

• how to deal with collinearity: 

 identify the cause of collinearity in data

 amputate some predictors if you can --- remember that collinearity happens 

because too many variables try to do the same job of explaining the response

 do not conclude the predictors we drop have nothing to do with the response

 techniques such as principle component regression, ridge regression, partial least 

squares, …, may help
 Reading: Faraway (1st ed.), 5.3; W, 10.1 
 Further reading: D&S, 16.1, 16.4, 16.5

Principal components

• Recall: Y=Xβ +ε. If X is orthogonal (i.e., XTX is a diagonal matrix), then 

estimation, testing, and parameter interpretation are greatly simplified.

• idea: For non-orthogonal X, replace Y=Xβ+ε by Y=Zβ’ +ε, where Z is a linear 

combinations of X (i.e., Zn×q=Xn×pUp×q, p≥q) and Z is orthogonal (ZTZ is diagonal)
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• orthogonality

Recall: 

bivariate 

normal

see graph, in which z1 is the projection of points on the 

direction u1; z2 is the projection of points on the direction u2

• concept of dimension reduction: 

 Q: take a look of the graph, the points are of 1-dim or of 2-dim?

 very similar to a line  high correlation  data is 2-dim, but close to 1-dim

 replace large number of columns in X with small number of columns in Z

 simpler model, especially useful (1) when few linear combinations of X are 

enough to represent the variation in X; (2) when p > n

• Zn×q= Xn×pUp×q, p≥q, e.g., take a look of the first column of Z

p. 9-12• principal component (PC): 

transform X to Z which is orthogonal, but how?

find U such that ZTZ is diagonal, i.e., ZTZ = diag(λ1,..., λp),  where λ1≥...≥λp ≥0

since ZTZ=UT(XTX)U, to make ZTZ diagonal, we can choose columns of U are 

orthogonal eigenvectors of XTX, then the λ1, λ2, ..., λp are eigenvalues of XTX

 let Uj and λj be the j-th eigenvector and eigenvalue of XTX, then (XTX)Uj=λj Uj

 Uk
TUj = 0 for k≠j and ||Uj||=1 for all j

 Uk
T (XTX)Uj=λjUk

TUj, which equals 0 if k≠j and equals λj if k=j

another way to look at it:

 Z1 = linear combination of columns

of X that has maximum length2, i.e, 

maximizing Σzi1
2 (variation of Z1)

 Z2 = linear combination of columns

of X that is orthogonal to Z1 and 

has maximum length2

 Z3 = linear combination of columns

X that is orthogonal to Z1, Z2 and 

has maximum length2

 …

 some properties:

 UTU=Iq×q

 zero eigenvalue  unidentifiable

 λj = length2 of Zj = Σi zij
2 [note: when 

E(Xj)=0  E(Zj)=0  λj ∝ var(Zj)]

 λ1+...+λp= tr(XTX) = Σj(length2 of Xj)

[note: when E(Xj)=0, 

λ1+...+λp ∝ Σj var(Xj): total variation]

 λj/(λ1+...+λp) = proportion of 

total variation explained by the jth PC

 Z1 (=1st column of Z) is called 1st principal component (PC), 

Z2 (=2nd column of Z) is called 2nd principal component (PC), ...
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 Q: how to interpret Z1, Z2,..., Zp? Ans: compare the coefficients in eigenvectors

 Ex 1: Z1=0.46GNP+0.32UnEm+0.46POP+0.46Year+...  hard to give meaning

 Ex 2: Z1=0.63(hw1)+0.57(hw2)+0.52(hw3) ∝ average homework scores; 

Z2 = 0.67(hw1)+0.08(hw2)-0.75(hw3) ∝ difference between hw 1 and 3 scores

XTX without constant term

covariance matrixcorrelation matrix

• variation on principal component regression

 use XTX with/without constant term (without constant 

term  PC's may not be orthogonal to constant term)

 use covariance matrix of X (without constant term), 

i.e., X
v
TX

v
/(n−1) where X

v
is formed by centering 

each gj, to find eigenvectors U and eigenvalues. Then, 

λj = var(zj). The transformation U can be applied on 

X or X
v

[PC's are orthogonal to constant term if 

transformation is applied on X
v
]

 use correlation matrix of X (without 

constant term), i.e, X
r
TX

r
/(n−1),

where X
r

is formed by standardizing

each gj. To make sense, the 

transformation should be applied on 

X
r

.Then, λj = var(zj) and PC's are 

orthogonal to constant term

p. 9-14• Notes: 

 interpretation is a problem --- little is gained if 
principal components are not interpretable

 how many principal components are worth considering? plot λi, often the plot has 

a noticeable "elbow" --- the point, say k, at which further eigenvalues are 

negligible in size compared to the earlier ones  (λ1+...+λk)/(λ1+...+λp) = 

proportion of total variation explained by the first k principal components

 principal components do not use information from the response in 

dimension reduction. It is possible that a lesser principal component is actually 

very important in explaining/predicting the response. Dimension-reduction 

methods that utilize information about the response exist, such as 
 partial least square
 sliced inverse regression (SIR)
 principal Hessian directions (pHd)
 projection pursuit regression
 canonical correlation analysis
 LASSO

 Reading: Faraway (1st ed.), 9.1

Ridge regression

• Q: what is the problem? strong collinearity (i.e., XTX close to singular) causes (1) 

numerical problem in calculating (XTX)-1; (2) unstable; (3) large variance in .β̂ β̂

NTHU STAT 5410, 2022  Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)



p. 9-15

• ridge estimator: a method of combating strong collinearity [Note: It would be better

to find out how collinearity occurs before doing ridge regression.]

centering and scaling predictors: X → F, i.e., FTF = correlation matrix of X

(Q: why?), and centering response: Y → Z, i.e., Z = Y- ,

y = β0 + β1 x1 + ... + βp xp + ε  Y = X β + ε
z = γ1 f1 + ...+ γp fp + ε  Z = F γ + ε

Note: βi = γi/sdi, where sdi is the sample standard deviation of xi, i=1, ..., p

 ridge estimator: for λ>0, = (FTF+λI)-1FTZ = (FTF+λI)-1FTY [note: FT1=0]

 λ=0  is the OLS estimator and λ→∞  .

 for an eigenvector ui of FTF and its corresponding eigenvalue λi, 

(FTF+λI)ui = (λi+λ)ui  ui is an eigenvector of (FTF+λI) with 

corresponding eigenvalue λi+λ (>λi)
 ridge estimator can remedy the problems caused by strong collinearity

γ̂
λ

Y

0=∞γ̂γ̂
0

 how to choose an appropriate λ? 

There exists various methods automatically choosing a λ. 

However, the most popular method is through ridge trace: 

plot against λ
Find a minimum value of λ (usually chosen in [0, 1]) 

after which are moderately stable. 

γ̂ λ

γ̂ λ
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