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• Recall: Y=Xβ +ε, where ε is error that represent measurement error or unexplained 

variation in Y, and “it’s assumed that X are fixed values measured without error.”

• Q: what if X are measured or observed with error? (examples)

Note: compare the difference between the 2 statements: "X measured with errors" 

and "X are random variables, such as in sampling model"

• Q: what happens if you ignore errors in X and still use 

OLS estimator? Let us consider a simple example:

 Q: Is minimizing RSS (i.e., OLS) still reasonable for ∆ data?

×: "fine" value, no error in predictor

and response, but not observed

○: observations with error only in 

response, but not error in predictor

∆: observations with error in both 

response and predictor

Errors in the predictor

 a statistical model for ∆ data: 

ideal "true" relationship is ηi=β0+β1ξi , 

but observe yi=ηi+εi and xi=ξi+δi, 

where ε and δ are errors of response and predictor respectively, i.e., 

yi=β0+β1ξi+εi=β0+β1xi+(εi-β1δi)

×: (ξi, ηi)

○: (ξi, yi)

∆: (xi, yi)

p. 9-8
 Q: what problem if we use ordinary least square to estimate β1 in the model?

 Let's assume E(εi)=E(δi)=0, var(εi)=σ2, var(δi)=σδ
2 and cov(ε ,δ)=0

 Let σξ
2=Σ(ξi - )2/n (Note: when ξi’s are not random, we could regard it as a 

measure of the spread of the predictor), σξδ=cov(ξ ,δ) and assume cov(ξ ,ε)=0

 the OLS estimator of β1 is:

. = [Σ(xi - )(yi - )]/ Σ(xi - )2

 after some calculation, we can write

E(     ) ≈ β1 × [( σξ
2+σξδ )/( σξ

2+σδ
2+2σξδ )]

 if no relation between ξ and δ (i.e., cor(ξ ,δ)=0), 

E(     ) ≈ β1 ×[σξ
2 /(σξ

2+σδ
2)] = β1 ×[1/(1+σδ

2/σξ
2)]  is biased

ξ

β
1

ˆ

β
1

ˆ β
1

ˆ

 typically, bias in        is towards zero

 size of the bias depends mainly on the ratio σδ
2/σξ

2 (i.e., variability in the 

errors of predictor relative to the spread of predictor)       (Q: why reasonable?)

 ratio is small  no worry

 ratio is large,         is underestimated  use measurement error model

• For multiple predictors, the usual effect of measurement errors on predictors is to 

bias the estimator of β in the direction of zero

• Prediction is not biased since future X will also be measured with errors. 

So, model for prediction should be built on X's measurement with error.

β
1

ˆ

 Reading: Faraway (1st ed.), 5.1; W, 4.6.3  Further reading: D&S, 3.4, 9.7

xβ
1

ˆ xy

NTHU STAT 5410, 2022  Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)



p. 9-9

• collinearity: predictors are (linearly) related to each other

 XTX is singular  some predictors are linear combinations of others

 (exact) collinearity  no unique estimate of β
 XTX close to singular  close to linear dependent among some predictors

 (approximate) collinearity or multicollinearity

• effect of collinearity:

 estimated effects are unstable (can change magnitude or sign depending on the 

other predictors in the model)  interpretation of estimated coefficients difficult

 cause numerical problem in estimating β and associated quantities

 var(    ) = σ2 (1/(1-Rj
2)) (1/Sj), where Sj = Σi (gij- )2 and Rj

2 is the coefficient of

determination obtained from regressing gj on all other predictors  when Rj
2≈1, 

var(    ) large  t-test may fail to reveal significance, i.e., miss important gj

 variance inflation factor: VIFj = 1/(1-Rj
2)  when Sj is fixed, VIFj represents the 

increase in variance due to the collinearity (e.g., interpret VIFj=16?)

β̂
j

g j

Collinearity

β̂
j

• detection of collinearity:

 examine correlations between predictors, i.e., cor(gk, gj)

 any values close to 1 or –1 reveal pairwise correlation

 for each gj, regress gj on all other predictors and compute Rj
2 or VIFj

 Rj
2 close to one or VIFj much larger than one indicate a problem of collinearity

p. 9-10

 examine eigenvalues, λ1≥…≥λp, of XTX  small eigenvalues indicate a problem

 condition number: k=(λ1/λp)
1/2

 rough rule: k > 30 is considered large

 for each i, (λ1/λi)
1/2 are worth considering  there may exist more than one

linear combination relationship between predictors

 eigenvectors of small eigenvalues indicate possible source of collinearity

• how to deal with collinearity: 

 identify the cause of collinearity in data

 amputate some predictors if you can --- remember that collinearity happens 

because too many variables try to do the same job of explaining the response

 do not conclude the predictors we drop have nothing to do with the response

 techniques such as principle component regression, ridge regression, partial least 

squares, …, may help
 Reading: Faraway (1st ed.), 5.3; W, 10.1 
 Further reading: D&S, 16.1, 16.4, 16.5

Principal components

• Recall: Y=Xβ +ε. If X is orthogonal (i.e., XTX is a diagonal matrix), then 

estimation, testing, and parameter interpretation are greatly simplified.

• idea: For non-orthogonal X, replace Y=Xβ+ε by Y=Zβ’ +ε, where Z is a linear 

combinations of X (i.e., Zn×q=Xn×pUp×q, p≥q) and Z is orthogonal (ZTZ is diagonal)
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• orthogonality

Recall: 

bivariate 

normal

see graph, in which z1 is the projection of points on the 

direction u1; z2 is the projection of points on the direction u2

• concept of dimension reduction: 

 Q: take a look of the graph, the points are of 1-dim or of 2-dim?

 very similar to a line  high correlation  data is 2-dim, but close to 1-dim

 replace large number of columns in X with small number of columns in Z

 simpler model, especially useful (1) when few linear combinations of X are 

enough to represent the variation in X; (2) when p > n

• Zn×q= Xn×pUp×q, p≥q, e.g., take a look of the first column of Z

p. 9-12• principal component (PC): 

transform X to Z which is orthogonal, but how?

find U such that ZTZ is diagonal, i.e., ZTZ = diag(λ1,..., λp),  where λ1≥...≥λp ≥0

since ZTZ=UT(XTX)U, to make ZTZ diagonal, we can choose columns of U are 

orthogonal eigenvectors of XTX, then the λ1, λ2, ..., λp are eigenvalues of XTX

 let Uj and λj be the j-th eigenvector and eigenvalue of XTX, then (XTX)Uj=λj Uj

 Uk
TUj = 0 for k≠j and ||Uj||=1 for all j

 Uk
T (XTX)Uj=λjUk

TUj, which equals 0 if k≠j and equals λj if k=j

another way to look at it:

 Z1 = linear combination of columns

of X that has maximum length2, i.e, 

maximizing Σzi1
2 (variation of Z1)

 Z2 = linear combination of columns

of X that is orthogonal to Z1 and 

has maximum length2

 Z3 = linear combination of columns

X that is orthogonal to Z1, Z2 and 

has maximum length2

 …

 some properties:

 UTU=Iq×q

 zero eigenvalue  unidentifiable

 λj = length2 of Zj = Σi zij
2 [note: when 

E(Xj)=0  E(Zj)=0  λj ∝ var(Zj)]

 λ1+...+λp= tr(XTX) = Σj(length2 of Xj)

[note: when E(Xj)=0, 

λ1+...+λp ∝ Σj var(Xj): total variation]

 λj/(λ1+...+λp) = proportion of 

total variation explained by the jth PC

 Z1 (=1st column of Z) is called 1st principal component (PC), 

Z2 (=2nd column of Z) is called 2nd principal component (PC), ...
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 Q: how to interpret Z1, Z2,..., Zp? Ans: compare the coefficients in eigenvectors

 Ex 1: Z1=0.46GNP+0.32UnEm+0.46POP+0.46Year+...  hard to give meaning

 Ex 2: Z1=0.63(hw1)+0.57(hw2)+0.52(hw3) ∝ average homework scores; 

Z2 = 0.67(hw1)+0.08(hw2)-0.75(hw3) ∝ difference between hw 1 and 3 scores

XTX without constant term

covariance matrixcorrelation matrix

• variation on principal component regression

 use XTX with/without constant term (without constant 

term  PC's may not be orthogonal to constant term)

 use covariance matrix of X (without constant term), 

i.e., X
v
TX

v
/(n−1) where X

v
is formed by centering 

each gj, to find eigenvectors U and eigenvalues. Then, 

λj = var(zj). The transformation U can be applied on 

X or X
v

[PC's are orthogonal to constant term if 

transformation is applied on X
v
]

 use correlation matrix of X (without 

constant term), i.e, X
r
TX

r
/(n−1),

where X
r

is formed by standardizing

each gj. To make sense, the 

transformation should be applied on 

X
r

.Then, λj = var(zj) and PC's are 

orthogonal to constant term

p. 9-14• Notes: 

 interpretation is a problem --- little is gained if 
principal components are not interpretable

 how many principal components are worth considering? plot λi, often the plot has 

a noticeable "elbow" --- the point, say k, at which further eigenvalues are 

negligible in size compared to the earlier ones  (λ1+...+λk)/(λ1+...+λp) = 

proportion of total variation explained by the first k principal components

 principal components do not use information from the response in 

dimension reduction. It is possible that a lesser principal component is actually 

very important in explaining/predicting the response. Dimension-reduction 

methods that utilize information about the response exist, such as 
 partial least square
 sliced inverse regression (SIR)
 principal Hessian directions (pHd)
 projection pursuit regression
 canonical correlation analysis
 LASSO

 Reading: Faraway (1st ed.), 9.1

Ridge regression

• Q: what is the problem? strong collinearity (i.e., XTX close to singular) causes (1) 

numerical problem in calculating (XTX)-1; (2) unstable; (3) large variance in .β̂ β̂
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• ridge estimator: a method of combating strong collinearity [Note: It would be better

to find out how collinearity occurs before doing ridge regression.]

centering and scaling predictors: X → F, i.e., FTF = correlation matrix of X

(Q: why?), and centering response: Y → Z, i.e., Z = Y- ,

y = β0 + β1 x1 + ... + βp xp + ε  Y = X β + ε
z = γ1 f1 + ...+ γp fp + ε  Z = F γ + ε

Note: βi = γi/sdi, where sdi is the sample standard deviation of xi, i=1, ..., p

 ridge estimator: for λ>0, = (FTF+λI)-1FTZ = (FTF+λI)-1FTY [note: FT1=0]

 λ=0  is the OLS estimator and λ→∞  .

 for an eigenvector ui of FTF and its corresponding eigenvalue λi, 

(FTF+λI)ui = (λi+λ)ui  ui is an eigenvector of (FTF+λI) with 

corresponding eigenvalue λi+λ (>λi)
 ridge estimator can remedy the problems caused by strong collinearity

γ̂
λ

Y

0=∞γ̂γ̂
0

 how to choose an appropriate λ? 

There exists various methods automatically choosing a λ. 

However, the most popular method is through ridge trace: 

plot against λ
Find a minimum value of λ (usually chosen in [0, 1]) 

after which are moderately stable. 

γ̂ λ

γ̂ λ
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