- Recall: $\underline{\boldsymbol{Y}}=\boldsymbol{X} \boldsymbol{\beta}+\underline{\boldsymbol{\varepsilon}}$, where $\underline{\varepsilon}$ is error that represent measurement error or unexplained variation in $\underline{\boldsymbol{Y}}$, and "it's assumed that $\underline{\boldsymbol{X}}$ are fixed values measured without error."

Note: compare the difference between the 2 statements: " \underline{X} measured with errors" and " \underline{X} are random variables, such as in sampling model" \Rightarrow Both X are random variables
- Q: what happens if you ignore errors in X and still use ${ }^{L} L N_{p}, 5-6 \sim 7$. OLS estimator? Let us consider a simple example:
$\sim E\left(y_{\xi}\right)=B_{0}+B_{1} \xi$
but, different causes of their randomness

x: "fine" value, no error in predictor and response, but not observed Q : observations with error only in response, but not error in predictor Δ : observations with error in both response and predictor
Q: Is minimizing RSS (i.e., OLS) still reasonable for Δ data? No.
a statistical model for Δ data: ideal "true" relationship is but observe
 where ε and δ are errors of response and predictor respectively, i.e.,
assume independent
observed $\underline{y}_{i}=\beta_{0}+\beta_{1} \xi_{i}+\underline{\varepsilon}_{i}=\beta_{0}+\beta_{1} \underline{x}_{i}+\left(\varepsilon_{i}-\beta_{1} \underline{\delta}_{i}\right)$

$\beta>\mathrm{Q}$: what problem if we use ordinary least square to estimate β_{l} in the model?

$$
\mathrm{E}\left(\hat{\beta}_{I}\right) \approx \beta_{1} \times\left[\underline{\sigma}_{\xi}^{2} /\left(\underline{\sigma}_{\xi}^{2}+\sigma_{\alpha^{2}}^{2}\right)\right]=\beta_{1} \times\left[1 /\left(1+\underline{\sigma}_{\delta}^{2} / \sigma_{\xi}^{2}\right)\right] \Rightarrow \hat{\beta}_{1} \text { is biased }
$$

- typically, bias in $\hat{\beta}_{1}$ is towards zero $\quad \tau \leqslant \underline{1}$
if $\underline{X} \& \subseteq$ are uncorrelated, $\sigma_{\varepsilon} \delta=\operatorname{cov}(\xi, \delta)=\operatorname{cov}(x-\delta, \delta)=-\sigma_{\delta}^{2}$
- size of the bias depends mainly on the ratio $\sigma_{\underline{\delta}}^{2} / \sigma_{\xi}^{2}$ (ie., variability in the errors of predictor relative to the spread of predictor) ($\underline{\mathrm{Q}}$: why reasonable?)
How? Let $\underline{\sigma}_{\xi}^{2}=\Sigma\left(\xi_{i}-\bar{\xi}\right)^{2} / n$ (Note: when $\xi_{\underline{i}}$'s are not random, we could regard it as a measure of the spread of the predictor), $\underline{\sigma}_{\xi \delta}=\operatorname{cov}(\xi, \delta)$ and assume $\operatorname{cov}(\xi, \varepsilon)=0$

| Oreduce σ_{0}^{2} |
| :--- | :--- |
| Q increase | ratio is small \Rightarrow no worry

(2) increase
\qquad - ratio is large, $\left|\hat{\beta}_{1}\right|$ is underestimated \Rightarrow use measurement error model

- For multiple predictors, the usual effect of measurement errors on predictors is to bias the estimator of β in the direction of zero But. Var $(\hat{Y}) \uparrow \because$ error in $X 9$ Note.
- Prediction is not biased since future X will also be measured with errors. So, model for prediction should be built on \boldsymbol{X}^{\prime} s measurement with error. -
* Reading: Faraway ($1^{\text {st }}$ ed.), 5.1; W, 4.6.3 * Further reading: D\&S, 3.4, 9.7 $+\varepsilon^{*}$
－collinearity：predictors are（linearly）related to each other model：$y=\sum_{j} \beta_{j} g_{j}(x)+\mathcal{E}$
$>\underline{X}^{\mathrm{T}} \boldsymbol{X}$ is singular \Rightarrow some predictors are linear combinations of others unidentifiable
 \Rightarrow（approximate）collinearity or multicollinearity $\exists a_{1} \cdots, a_{p}$ s．t．$\sum_{j=1}^{\infty} a_{j} g_{j}\left(x_{i}\right) \approx 0$
 estimated effects are unstable（can change magnitude or sign depending on the $5 j * \overline{T 5 j}$ other predictors $\underline{\text { in the model })} \Rightarrow$ interpretation of estimated coefficients difficult
\rightarrow cause numerical problem in estimating β and associated quantities 4 calculate $\left(x^{\top} x\right)^{-1}$ $\left.\operatorname{var}\left(\hat{\beta}_{j}\right)=\sigma^{2}\left(\underline{1 /\left(1-R_{i}^{2}\right.}\right)\right)\left(1 / S_{j}\right)$ ，where $\left.\underline{S}_{j}=\underline{\Sigma}_{i} \underline{(g}_{i j}-\bar{g}_{j}\right)^{2}$ and \underline{R}_{j}^{2} is the coefficient of $\left(x^{+} x\right)_{j_{j}}^{-1}$ determination 0 obtained from regressing g_{j} on all other predictors \Rightarrow when $\underline{R}_{j}{ }^{2} \approx 1$ ，

$>$ variance inflation factor：$\underline{V I F_{j}}=\underline{1 /\left(1-R_{j}^{2}\right)} \Rightarrow$ when \underline{S}_{j} is fixed，$\underline{V I F_{j}}$ represents the increase in variance due to the collinearity（e．g．，interpret $V I F_{j}=16$ ？ 7
－detection of collinearity：－compared to the case $\begin{gathered}\text { of orthogonality（i．e：} R_{j}^{2}=0 \text { ）}\end{gathered}$
s．e．$\left(\hat{\beta}_{\mathrm{f}}\right) \approx \sqrt{16}=4$ times
$>$ examine correlations between predictors，i．e．，$\underline{\operatorname{cor}\left(g_{k}, g_{j}\right) \nleftarrow \text { from larger than being }}$ \Rightarrow any values close to 1 or -1 reveal pairwise correlation $\underline{X}^{\boldsymbol{X}} \underline{X}$ orthogonal．
$>$ for each g_{j} ，regress g_{j} on all other predictors and compute \underline{R}_{j}^{2} or $\underline{V I F_{j}}$
$\Rightarrow \underline{R}_{i}^{2} \underline{\text { close to one or }} \underline{V I F_{i}}$ much larger than one indicate a problem of collinearity
examine eigenvalues，$\lambda_{1} \geq \ldots \geq \lambda_{p}$ ，of $\boldsymbol{X}^{\mathrm{T} \boldsymbol{X}} \Rightarrow$ small eigenvalues indicate a problem ${ }^{\mathrm{p}}$ condition number：$k=\left(\lambda_{\underline{l}} / \lambda_{p}\right)^{1 / 2}$
－rough rule：$k>30$ is considered large $\Rightarrow \lambda^{1 / 1 / \lambda_{p}>900}$
Then，$a_{1} g_{1}+\cdots+a_{p} g_{p} \approx 0$
－for each $i,\left(\boldsymbol{\lambda}_{l} / \lambda_{i}\right)^{1 / 2}$ are worth considering \Rightarrow there may exist more than one linear combination relationship between predictors
－eigenvectors of small eigenvalues indicate possible source of collinearity
－how to deal with collinearity：
$>$ identify the cause of collinearity in data
Check
$L N_{p .5-11} \sim 12$
explain why collinearity occurs，not only to detect whether it occurs．
check amputate some predictors if you can－－－remember that collinearity happens
 CO do not conclude the predictors we drop have nothing to do with the response 4 cf． techniques such as principle component regression，ridge regression，partial least squares，, ，may help \rightarrow to reduce the impact of collinearity，e．g．．PC use linear
＊Reading：Faraway（ ${ }^{\text {st }}$ ed．），5．3；W， 10.1
＊Further reading：D\＆S，16．1，16．4， 16.5

主成分 \longrightarrow Principal components

every column of Z is a linear combination of the columns of X
－Recall：$\underline{\boldsymbol{Y}}=\underline{\boldsymbol{X}} \boldsymbol{\beta}+\underline{\varepsilon}$ ．If \boldsymbol{X} is orthogonal（i．e．， $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}$ is a diagonal matrix），then estimation，testing，and parameter interpretation are greatly simplified．
－idea：For non－orthogonal $\underline{\boldsymbol{X}}$ ，replace $\boldsymbol{Y}=\underline{\boldsymbol{X}} \underline{\beta}+\boldsymbol{\varepsilon}$ by $\boldsymbol{Y}=\underline{\boldsymbol{Z}} \beta^{\prime}+\boldsymbol{\varepsilon}$ ，where $\underline{\boldsymbol{Z}}$ is a linear combinations of $\underline{\boldsymbol{X}}$（i．e．，$\underline{\boldsymbol{Z}}_{n \times q}=\underline{\boldsymbol{X}}_{n \times p} \underline{\boldsymbol{U}}_{p \times q}, p \geq q$ ）and $\underline{\boldsymbol{Z}}$ is orthogonal（ $\underline{\boldsymbol{Z}^{\mathrm{T}} \boldsymbol{Z}}$ is diagonal）

$\Rightarrow \operatorname{cor}\left(g_{j} . g_{k}\right)=0$ - $\underline{\boldsymbol{Z}}_{n \times q}=\boldsymbol{X}_{n \times p} \underline{\boldsymbol{U}}_{p \times q}, p \geq q$, e.g., take a look of the first column of $\underline{\boldsymbol{Z}}$
 direction $u_{1} ; z_{2}$ is the projection of points on the direction u_{2}

- concept of dimension reduction: $\rightarrow\left[\begin{array}{l}1 \text {. smaller dinension, better } \\ 2 \text { important information should be kept }\end{array}\right.$
> Q: take a look of the graph, the points are of 1-dim or of 2-dim? \Rightarrow very similar to a line \Rightarrow high correlation $\Rightarrow \underline{\text { data }}$ is 2 -dim, but $\underline{\text { selection } \rightarrow \text { cose to }} \underline{1-d i m}$ $>$ replace large number of columns in \underline{X} with small number of columns in \underline{Z} \Rightarrow simpler model, especially useful (1) when few linear combinations of \underline{X} are enough to represent the variation in $\underline{\boldsymbol{X}}$; (2) when $p>n \longleftarrow$ unidentifiable
 $>$ transform \underline{X} to $\underline{\boldsymbol{Z}}$ which is orthogonal, but how? $\mathbb{Z}_{\dot{j},}, \mathbb{Z}_{\underline{k}}$ uncorrelated, $i f \underline{E}\left(\mathbb{Z}_{j}\right)=\underline{E}\left(\mathbb{Z}_{k}\right)=\underline{0}$ $>$ find $\underline{\boldsymbol{U}}$ such that $\underline{\boldsymbol{Z}}^{\mathrm{T}} \boldsymbol{Z}$ is diagonal, i.e., $\underline{\boldsymbol{Z}^{\mathrm{T}} \boldsymbol{Z}}=\underline{\operatorname{diag}\left(\lambda_{\underline{l}} \underline{\ldots}, \lambda_{p}\right) \text {, where } \underline{\lambda}_{\underline{1}} \geq \ldots \geq \lambda_{p} \geq 0}$ $>$ since $\underline{\boldsymbol{Z}}^{\mathrm{T}} \boldsymbol{Z}=\underline{\boldsymbol{U}}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \underline{\boldsymbol{U}}$, to make $\boldsymbol{Z}^{\mathrm{T}} \boldsymbol{Z}$ diagonal, we can choose columns of $\underline{\boldsymbol{U}}$ are symmetric
orthogonal eigenvectors of $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}$
, then the $\underline{\lambda}_{1}, \lambda_{2}, \ldots, \lambda_{p}$ are eigenvalues of $\overline{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{X}$ \bullet let \boldsymbol{U}_{j} and $\underline{\lambda}_{j}$ be the j-th eigenvector and eigenvalue of $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}$, then $\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \underline{\boldsymbol{U}}_{j}=\underline{\lambda}_{j} \underline{\boldsymbol{U}}_{j}$ -- $\boldsymbol{U}_{k}{ }^{\mathrm{T}} \boldsymbol{U}_{j}=0$ for $\underline{k \neq j}$ and $\left\|\boldsymbol{U}_{j}\right\|=1$ for all j $\left(\mathbf{Z}^{\mathrm{T}}\right)_{\boldsymbol{x}_{\mathrm{j}}} \underline{\boldsymbol{U}_{\underline{k}}^{\mathrm{T}}} \underline{\left.\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)} \underline{\boldsymbol{U}}_{j}=\underline{\lambda}_{j} \underline{\boldsymbol{U}}_{k}^{\mathrm{T}} \underline{\boldsymbol{U}_{j}}$, which equals 0 if $\underline{k \neq j}$ and equals λ_{j} if $\underline{k=j}$ $>\underline{\boldsymbol{Z}}_{\underline{l}}\left(=1^{\text {st }}\right.$ column of $\left.\underline{\boldsymbol{Z}}\right)$ is called $\underline{1}^{\text {st }}$ principal component (PC),
ferection $\underline{\boldsymbol{Z}}_{2}^{-}\left(=2^{\text {nd }}\right.$ column of $\left.\underline{\boldsymbol{Z}}\right)$ is called $\underline{2}^{\text {nd }}$ principal component $(\underline{\text { PC }}), \ldots$
$>$ another way to look at it: $\left.\boldsymbol{Z}_{j}^{\top} \boldsymbol{Z}_{j}=\left(\mathbf{Z}^{\top}\right)_{j j}=\lambda_{j}\right\rangle>$ some properties:
$\begin{aligned} & \text { Un=unite } \\ & \text { vector } \\ & \boldsymbol{Z}_{l}\end{aligned}=$ linear combination of columns of \underline{X} that has maximum length ${ }^{2}$, i.e,

$\left\|z_{i}\right\|^{2}$

$=z_{j}^{\prime} z_{j}$

 $=\left(x 0_{j}\right)^{7}-\underline{Z}_{2}=$ linear combination of columns $\left(\times \sigma_{j}\right)$ of \underline{X} that is orthogonal to $\boldsymbol{Z}_{\underline{l}}$ and $\bar{g}_{j}=0$ $=\sigma_{j}^{\top} x^{\top} \times \sigma_{j}$ has maximum length ${ }^{2} \rightarrow \oplus+\Psi_{2} \perp \bar{U}_{1} \quad \forall j$ -gundatic \boldsymbol{Z}_{3} linear combination of columns maximizing $\underline{\Sigma z}_{i I}{ }^{2}$ (variation of \underline{Z}_{I}) $\underline{\boldsymbol{X}}$ that is orthogonal to $\boldsymbol{Z}_{1}, \overline{\boldsymbol{Z}_{2}}$ and has maximum length ${ }^{2} \rightarrow \frac{b^{\prime}}{9} \rightarrow\left[\begin{array}{l}\sigma_{3}+\sigma_{1} \\ \sigma_{3} \perp \sigma_{2}\end{array}\right]$

- zero eigenvalue \Rightarrow unidentifiable
(©) $\underline{\lambda}_{j}=$ length ${ }^{2}$ of $\boldsymbol{Z}_{j}=\underline{\Sigma}_{i} z_{i j}^{2}$ [note: when
 - $\lambda_{l}+\ldots+\lambda_{p}=\underline{\operatorname{tr}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)}=\underline{\Sigma}_{j}\left(\right.$ length ${ }^{2}$ of $\left.\boldsymbol{X}_{j}\right)$
[note: when $\mathrm{E}\left(\boldsymbol{X}_{j}\right)=0 \leqslant-\forall j$ d $\begin{gathered}\text { sum of variations of } \\ \text { different anits }\end{gathered}$ tr($\left.\bar{Z}^{2} Z\right) ~ \lambda_{1}+\ldots+\lambda_{p} \propto \underline{\Sigma}_{j} \operatorname{var}\left(\boldsymbol{X}_{j}\right)$: total variation $\}^{4}$ - $\underline{\lambda}_{i} /\left(\lambda_{1}+\ldots+\lambda_{p}\right)=$ proportion of L of \boldsymbol{X} total variation explained by the j th PC
$>$ Q: how to interpret $\underline{\boldsymbol{Z}}_{1}, \boldsymbol{Z}_{2}, \ldots, \boldsymbol{Z}_{p}$? Ans: compare the coefficients in eigenvectors

- Ex 2: $\underline{\boldsymbol{Z}}_{l}=0.63$ (hw1) +0.57 (hw2) +0.52 (hw3) \propto average homework scores;
$\underline{\boldsymbol{Z}_{2}}=\underline{0.67}(\mathrm{hw} 1)+\underline{0.08(\mathrm{hw} 2)-0.75}(\mathrm{hw} 3) \propto \underline{\text { difference }}$ between hw 1 and 3 scores
- variation on principal component regression
$>$ use $\underline{\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}} \underline{\text { with }}$ without constant term (without constant term $\Rightarrow \underline{\text { PC's }}$ may not be orthogonal to constant term)
$>$ use covariance matrix of $\underline{\boldsymbol{X}}$ (without constant term), i.e., $\underline{\boldsymbol{X}}_{\underline{v}} \underline{\mathrm{~T}}_{\underline{v}} /(n-1)$ where $\underline{\boldsymbol{X}}_{\underline{v}}$ is formed by centering each g_{j}, to find eigenvectors \boldsymbol{U} and eigenvalues. Then, $\lambda_{j}=\operatorname{var}\left(z_{j}\right)$. The transformation \boldsymbol{U} can be applied on $\underline{\boldsymbol{X}}$ or $\underline{\boldsymbol{X}}_{\underline{v}} \quad$ [PC's are orthogonal to constant term if $\longrightarrow \mathbb{Z}_{\nu}=\boldsymbol{X}_{\boldsymbol{\nu}} \boldsymbol{U}$ transformation is applied on \boldsymbol{X}_{v}]
$>$ use correlation matrix of \underline{X} (without constant term), i.e, $\underline{\boldsymbol{X}}_{\boldsymbol{r}}^{\mathrm{T}} \boldsymbol{X}_{\boldsymbol{r}} /(n-1)$,
 each g_{j}. To make sense, the transformation should be applied on $\underline{X}_{\underline{r}}$.Then, $\underline{\lambda}_{j}=\operatorname{var}\left(z_{j}\right)$ and PC's are orthogonal to constant term free of unit

$\longrightarrow\left(\mathbb{Z}^{\top} \mathbb{Z}_{\mathbf{j k}}=0\right.$ 渗 uncorrelated
$\boldsymbol{L}_{\boldsymbol{X}} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}$ without constant term

$>$ interpretation is a problem --- little is gained if principal components are not interpretable 4
$>$ how many principal components are worth considering? plot λ_{i}, often the plot has a noticeable "elbow" --- the point, say k, at which further eigenvalues are negligible in size compared to the earlier ones $\Rightarrow\left(\boldsymbol{\lambda}_{\underline{l}}+\ldots+\lambda_{\underline{k}}\right) /\left(\underline{\lambda}_{\underline{l}}+\ldots+\lambda_{p}\right)=$ proportion of total variation explained by the first k principal components
$>$ principal components do not use information from the response in Recall criteria dimension reduction. It is possible that a lesser principal component is actually very important in explaining/predicting the response. Dimension-reduction methods that utilize information about the response exist, such as
- partial least square - relax one $*$
- sliced inverse regression (SIR)
- principal Hessian directions (pHd)
- projection pursuit regression
- canonical correlation analysis
- LASSO
* Reading: Faraway (1st ed.), 9.1

other better estimator than OLS? 4

Ridge regression

- \underline{Q} : what is the problem? strong collinearity (i.e., $\underline{\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}}$ close to singular) causes (1) numerical problem in calculating $\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1}$; (2) $\hat{\boldsymbol{\beta}}$ unstable; (3) large variance in
- ridge estimator: a method of combating strong collinearity [Note: It would be bette ${ }^{\text {p. }}$. 9.15 to find out how collinearity occurs before doing ridge regression.]
(Q: why?), and centering response: $\underline{\boldsymbol{Y}} \xrightarrow{\underline{\boldsymbol{Z}}} \underline{\boldsymbol{Z}}$, ie., $\underline{\boldsymbol{Z}}=\underline{\boldsymbol{Y}-\overline{\boldsymbol{Y}}}$, obS est'or of $\boldsymbol{\mathscr { X }}$ standardization

Recall. Note: $\beta_{i}=\gamma_{i} / s d_{i}$, where $\underline{s d_{i}}$ is the sample standard deviation of $\underline{x}_{i}, i=1, \ldots, p$ ritz
 Scale $\quad-\underline{\lambda=0} \Rightarrow \underline{\hat{\gamma}_{0}}$ is the OLS estimator and $\underline{\lambda \rightarrow \infty} \Rightarrow \underline{\hat{\gamma}_{\infty}=0}{ }_{\text {no intercept }}^{\dagger}$ for an eigenvector $\underline{\boldsymbol{u}}_{i}$ of $\boldsymbol{F}^{T} \boldsymbol{F}$ and its corresponding eigenvalue $\boldsymbol{\lambda}_{\underline{i}}$, $\left(\boldsymbol{F}^{T} \boldsymbol{F}+\lambda \boldsymbol{I}\right) \underline{\boldsymbol{u}}_{i}=\left(\lambda_{i}+\lambda\right) \underline{\boldsymbol{u}}_{i} \Rightarrow \underline{\boldsymbol{u}}_{i}$ is an eigenvector of $\left(\boldsymbol{F}^{T} \boldsymbol{F}+\boldsymbol{\lambda I}\right)$ with
 have same corresponding eigenvalue $\overline{\lambda_{i}}+\lambda\left(\geq \bar{\lambda}_{i}\right) \leftrightarrows$ strong collinearity \Leftrightarrow some $\lambda_{i}{ }^{\prime} s \approx 0$ eigenvectors. ridge estimator can remedy the problems caused by strong collinearity $(\Delta)>$ how to choose an appropriate λ ? $\begin{aligned} & \text { criteria, egg., } \\ & \text { crossvalidation.... }\end{aligned}$ $\boldsymbol{F}^{+} \boldsymbol{F}=$ There exists various methods automatically choosing a λ. $\underline{\sigma} \Lambda \sigma^{\circ}$. $F^{\top} F+\lambda I=$
$\square(\Lambda+\lambda] U^{\top}$ why? $7 \quad$ plot $\underline{\hat{\gamma}_{\lambda}}$ against λ $\mathrm{L}_{\boldsymbol{\sigma} \boldsymbol{\sigma}^{\top}=1}$ Find a minimum value of $\underline{\lambda}$ (usually chosen in $[0,1]$] after which $\underline{\hat{\gamma}_{\lambda}}$ are moderately stable.

