NTHU STAT 5410, 2022 Lecture Notes

p. 9-7

random— Errors in the predictor
* Recall: Y=XB+¢, where £1is error that represent measurement error or unexplained

variation in ¥, and “it’s assumed that X are fixed values measured without error.”

»— random (1) sampli;
* Q: what if X are measured or observed with error? (examples} (2)observetiona) dadt

Note: compare the difference between the 2 statements: "X measured with errors"
and "X are random variables, such as in sampling model" = Both X are random vanables

* Q: what happens if you ignore errors in X and still use i 56~m but, dﬁm
OLS estimator? Let us consider a simple examplei_‘_ E(4)=Bo+B.E of their randomness

o X: "fine" value, no error in predictor
< and response, but not observed

i O: observations with error only in
response, but not error in predictor

B S h"'.. A: observations with error in both
€ ;S->$.,s response and predictor
» Q: Is minimizing RSS (i.e., OLS) still reasonable for A data? Ne. Z:Ea: ]

> a statistical model for A data: E(4e)
ideal "true" relationship 1s L"[Zz =Byt Bi4;
but observe y=n+¢& and x;=§+0,
where Eand 5 are errors of response and predictor respectlvely, ie.,

[aSSume mdweﬂ-t] ml gO_gl i _z /80+/81 +(€ ﬁla-) Obsmd

X pr_lel
o: (€ 1)
A (x;, ;)

p- 9-8

@ Q: what problem if we use ordinary least square to estimate ,8, in the model‘?
Let's assume E(&)=E(9)=0, var(&)=¢, var(9)=04 and cov(€, 9= 0 va'c(aeig.

§-L'5a!o ';f‘,a)Let 02=3(4;- ¢ §)’/n (Note: when &’s are not random, we could regard it as a
in measure of the spread of the predictor), Igs=cov(§, 0) and assume ME_EL
_» the OLS estimator of B is: cov(x, g)/ larg G5 Y= —%
g-ﬁj [30- )02 DV 5= T conlsdpli)
» after some calculation, we can write [ Var (5_5) = S~ | [fitted

' ~ e | I
(exercise)» E(ﬂl )= gl_x [( 062+0<‘5 ) 052+052+2055 )];]_ J:;fgg
» if no relation between ¢ and d(i.e., cor(&, 9)=0), 3
E( B,) = B, X[02 a2+ = B, X[ U 1+04/T2)] =P, is biased
= typically, bias in I B, 1s towards zero = s1 g;,’ifo.‘fé"‘;s)-m(x-s 8)2-6}

= size of the bias depends mainly on the ratio 052/_0 2 (i.e., variability in the
errors of predictor relative to the spread of predlctor) (Q: why reasonable?)

2|
Ss|@) ratio is small = no worry

| model

m

o ratio is large, | Bl | is underestimated = use measurement error model
 For multiple predictors, the usual effect of measurement errors on predictors is to
bias the estimator of £ in the direction of zero But, Var( V)1 -cerrorin X J Vot
i .

* Prediction is not biased since future X will also be measured with errors. _
S del for prediction should be built on X' t with d=BorBx
0, model for prediction should be built on X's measurement with error. | Y
% Reading: Faraway (1%t ed.), 5.1; W, 4.6.3 ¢ Further reading: D&S, 3.4, 9.7
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Collinearity<-Recall. Idenkifiobiliky (LNp 5-11~12) Poe
* collinearity: predictors are (linearly) related to each other mpdel: 4= ? ngj(5)+§

> X'X is singular = some predictors are linear combinations of others uidentifiable
= (exact) collinearity = no unique estimate of 8 3@, @ s.t. £ aj3i(X)=0

. : J= = 3

» X'X close to singular = close to linear dependent among some predictors Vi

= (approximate) collinearity or multicollinearity 3 Qi.--, @p s.t. a,}; Q;3;(Xi)~0
. - exertise - v - - =
« effect of collmearlty:r(g!; s"i&&)‘(ﬂ)é%[ 9,'9; - _,3_37 Xe-qn (X Xein) X 9. ! - RSSy
» estimated effects are unstable (can change magnitude or sign depending on the
Sie185i other predictors in the model) = interpretation of estimated coefficients difficult

» cause numerical problem in estimating S and associated quantities < calculate ()(’)()'l
var(B)) = & (1/(1- R?)) (1/S)), where S, = Z,(g,,- 9,)*> and R?is the coefficient of
(X'X);; determination obtained from regressing g; on all other predictors = when RZ=1,

292 Jvar(3,) large = t-test may fail to reveal significance, i.e., miss important g
> variance inflation factor: VIF; = 1/(1- R?) = when §; is fixed, VIF, represents the
: ; : : / . T 169
increase in variance due to the collinearity (e.g., interpret VIF/=16 9—1

. ' ; ity - compared to the case =
detectlor'l of collmee.mty. of orthogonality (ie., R3=0) Se(B)=Ji6= U ¢
> examine correlations between predictors, i.e., cor(g;, g;)eq $rom | larger than being_
= any values close to 1 or —1 reveal pairwise correlation  x*x or-Ulogonal .

» for each g, regress g; on all other predictors and compute 1_%13 or VIF;

5 e . :
= R/ close to one or VIF; much larger than one indicate a problem of collinearity

10

. Lo eigenvector (a.,-:-. Qp)
= condition number: k=(A.,/A )12 ‘3 P
- - (—1—2) Then, a.g,w--e-apgpz o

« examine eigenvalues, A 2. .2/12, of XTX = small eigenvalues indicate a problerrpl' >
Np512

= rough rule: k> 30 is considered large >/, Ap > 700

= for each i, (A,/A,)!2 are worth considering = there may exist more than one
linear combination relationship between predictors

= eigenvectors of small eigenvalues indicate possible source of collinearity

» how to deal with collinearity: Check |- €xplain why collinearity
LNp.5-11 ~12] ©Ccurs, not only to detect
whether it occurs.
the> amputate some predictors if you can --- remember that collinearity happens

ls‘: NOf:Q b
inWp%-6

do not conclude the predictors we drop have nothing to do with the response <5

» identify the cause of collinearity in data

ecause too many variables try to do the same job of explaining the response «<F

» techniques such as principle component regression, ridge regression, partial least
squares, ..., may help ~ to reduce the impact of- collinearity, e.q.. PCuse linear

< Reading: Faraway (1% ed.), 5.3; W, 10.1 , - __combinations of ,31"5 <«
< Further reading: D&S, 16.1, 16.4, 16.5 e”;zn:;{“m of Z is a linear
¥4 —> Principal components (9monation of the columns of X | B & are

e Recall: Y=XfB+& If X is orthogonal (i.e., X'X is a diagonal matrix), then | | different
; .— SO . 3 . . parameters
estimation, testing, and parameter interpretation are greatly simplified.
* idea: For non-orthogonal X, replace Y=X @:sby Y=Z [ +¢& where Z is a linear
combinations of X (i.€., Z,,,=X, ,U, > P=9) and Z is orthogonal (£'Z is diagonal)

—np.
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a .« model matrix=[2 3 Z---Z]=[1 X] rdnabod 2!

* orthogonality z | @—-Istcao inafes’
Recall:(INp 4-5) 1 /rr\\ el

bivariate(z / '

My |- ——

normal 53:% h U O
orthogonal 37,9, i ‘ S $d coortinates)
2> cor(§;.9«)=0 ——%.% .nJepgnden{: (cor-o) L . 42 correlated (cor=0)
* Z,x;~ Xy U, P29, €.2., take a look of the first column of Z 2ndcolumn Is€ column
_n _n_g — =3 [ o5 U
L rotation matrix _§ st row of X 0" * 1 7
[ Z11 {011 712 A TP
=| ?21 g21 T g22 - 92p
-[ ‘ = L;‘bﬂ 2 cordinate
gnl gn2 i U'(ﬂ[;n':t@f)

L “rotakion - row| .’ .436‘)-' ! Wl ] lst'cm’dl-lbée
l (911, 912,---79173) — (2117212,-- » 21 )*"'Stz hon | of | 5¥

®see graph, in which z z, 18 the projection of points on the
direction u,; z, is the projection of points on the direction u,

~ F5model selecti smaller . better
« concept of dimension reedit?tgogzn-b[g Mﬁ%m should be kept

» Q: take a look of the graph, the points are of 1-dim or of 2-dim?

= very similar to a line = high correlation = data is 2-dim, but closeto 1 d1m

—P — & (usually <p)
» replace large number of columns in X with small number of columns in Z

= simpler model, especially useful (1) when few linear combinations of X are
enough to represent the variation in X; (2) when p > n<— unidentifiable N

p. 9-12

< principal component (PC): Zj=X Uz ¢ Z =X 'Uﬂ-—?] zJ 2j= Ui(x‘rx)ul 2§ IUJII:"M
» transform X to Z which is orthogonal, but how* z;, Z&mcoﬂda{:ed d,if E(Z;)=E(2:)=0

> find U such that W AVAL diagonal, i.e., ZTZ = dlag(/1 s A,), Where A,2..24,20

] mmttsmce Z'Z=U"(X'X)U, to make Z'Z diagonal, we can choose columns of U are
! orthogonal eigenvectors of X'.X, then the A;, A, ..., A are eigenvalues of X'.X

=let U; and A, be the j-th eigenvector and elgenvalue of X'X, then (X'X) U, i
TU 0 for k#j and ||U||=1 for all j

(z Z)k;?U —(@ U=AULU, which equals 0 if k#j and equals A, if k=/ ,{42 U
> Z,(=1% columh of Z) is called 1% principal component (PC), . W¥ |
Z, (=2" column of Z) is called 2" principal component (PC), ... / Qy
ﬂ >an0ther way to look at it: 2121-(2'1)3- =Ajn> some properties: P ) ;)l
t{;ccg‘g =Z,= - linear combination of columns ﬂ] 1., U an ackia. |
of X that has maximum length?, i.e, » zero eigenvalue = unidentifiable

..z?zl maximizing 2z, (variation of Z) @ A, = length? of Z,= 5, z,2 [note: when
=(ymy® Z,= linear combination of columns E(X =0 = )=0 = /1 U var(Z)]
XU,

=(xg;) 5( j N (

(xT;) of X that is orthogonal to Z, and 3: -0 \—sample mean 3 sample varianc )
=U;%™Uz has maximum length2 = At 4A= r(X'X) = 2 (length? of X))

oguodubic , _ Z;= linear combination of columns f[?mte when E(X)=0+V4 M

Sorm X that is orthogonal to Z,, Z, and ez A, +.. .+A4,0 2, var(X)): total variation

has maximum length? U5 L U . A /(/1 +.. +/1 ,) = proportion of Lorx
Uzl Ua total variation explained by the jth PC

B
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p. 9-13
» Q: how to interpret Z,, Z,,..., Z,? Ans: compare the coefficients in eigenvectors

* Ex 1: Z,=0.46GNP+0.32UnEm+0.46POP+0.46 Year+... = hard to give meaning
= ——a = =

S QVRTAGR N

» Ex 2: Z,=0.63(hw1)+0.57(hw2)+0.52(hw3) U average homework scores;
Z,=0.67(hw1)+0.08(hw2)- 0.75(hw3) 0 difference between hw 1 and 3 scores
- t=0

* variation on principal component regression

o . PN
> use X"X with/without constant term (without constant] jocation (Z2)j=0 3% uncorrelated
[ Llss

term = PC's may not be orthogonal to constant term) ) XX without constant term
» use covariance matrix of X (without constant term), i dis

i.e., XX /(n—1) where X, is formed by centering 3;‘- 9'3

each g, to find eigenvectors U and eigenvalues. Then, / K

A, = var(z)). The transformation U can be applied on[z=X0-/| U/

XorX, [PC'sare orthogonal to constant term if ~|Zy=X, U
transformation is applied on X, ] XXy

» use correlation matrix of X (without ﬁ&mﬁ',g correlation matrix covariance

constant term), i.e, X.7X /(n—1), change |
Zr=|where X, is formed by standardizing| of ;'
X, each g,. To make sense, the \
Ltransfo_rmation should be applied onl
X, .Then, A, = var(z)) and PC's are Sy

original 'y
(0 4" b

orthogonal to constant term mofun;b_r (0,0) = L
L4
@ Notes: Note. In the development of PCs,” "™
» interpretation is a problem --- little is gained if | the ¢riferia (LNp.12) do Rot
principal components are not interpretable consider interpretation

» how many principal components are worth considering? plot A, often the plot has
a noticeable "elbow" --- the point, say k, at which further eigenvalues are
negligible in size compared to the earlier ones = (A, +...+A,)/(A,+...+4)) =
proportion of total variation explained by the first k principal components

> principal components do not use information from the response erfg" Lﬁ%ﬂl

dimension reduction. It is possible that a lesser principal componentzg actuall
very important in explaining/predicting the response. Dimension-reduction
methods that utilize information about the response exist, such as

= partial least square <-relax one %
sliced inverse regression (SIR)
principal Hessian directions (pHd)

= projection pursuit regression
» canonical correlation analysis
| LAS SO < cF- 1 : M AW .. I
< Reading: Faraway (1% ed.), 9.1 12314506 @:%—:bh(ﬁ
other better estimator . . iy
han OLS 2 < Ridge regression 272 =diag(2)

* Q: what is the problem? strong collinearity (i.e., X" X close to singular) causes (1)

numerical problem in calculating (X"X) !; (2) A unstable; (3) large variance in ?
OLS estimator B
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¢I° ridge estimator: a method of combating strong collinearity [Note: It would be bettr
to find out how collinearity occurs before doing ridge regression. ] can comPartgl

Q: whv“?) and centermg response: ¥ - Z,1.e, Z=Y-Y OLS estor of ¥

I=x Z= wstaie 7F

different; Tange of- an X Tn different, data. ,
? centering and scaling predlctors X - F,ie., F'TF = correlatlon matrix of X

'

5
+ .+ + +

Ll,m¢ = £ Fy & ﬂnremst:
Note: S 5 y/sd,, Where sd is the sample standard deviation of x,, i=1, ..., p° iy
ridge estimator: for A>0, Vx—(FTFvLAI) \FTZ = (FTF+AIy lfﬂ/ [note FT1=0]

= A=0= Y, isthe OLS estimator and A0 = J,=0 no intercept . OLS estor,
2

@ for an eigenvector u; of F'F and its corresponding eigenvalue A,, At
(FTF+ADu;= (A, +/1)u = u;is an eigenvector of (FTF+AI) w1th o 3 shrinkage"'
corresponding eigenvalue A, +/1 (A, )4-. Séro:g collinearity <=> some Ai’s =0

» ridge estimator can remedy the problems caused by strong collinearity

» how to choose an appropriate A? crin‘:eria',e.g.. ?; can be used in
(4) pprop crossvalidation ,--- ; model selection

There exists various methods automatically choosing a A. "33,

However, the most popular method is through ridge trace:~»-- i
why? — plot V4 against A e
vo™1Find a minimum value of A (usually chosen in [0, 1]

after which ¥, are moderately stable. R\ =tue(FF)=4
- average of Ai's = 1

made by S.-W. Cheng (NTHU, Taiwan)



