
p. 9-1

• Q: what is a “model selection” problem? 

 consider the full model: 

For 1≤ i ≤ k−1, should the term βigi be included in the final fitted model?

Model (variable) selection

(sub-)model: a subset set of all 
k−1 terms, e.g.,

{1, g1, g2},

{1, g2, g4, g5, gk−1}, … 

 p = # of parameters in a 
sub-model

 # of different sub-models = 2k−1

hierarchical structure of 
all sub-models (see graph)

objective of model selection: select 
a "best" sub-model

Q: what is a good sub-model? We 

usually hope a good model to have

 high R2 .

 not too many terms

 terms with significant t-tests



Example: 6 terms, I, Y, p, E, R, T

p. 9-2• Q: why bother to select a best subset of all terms?

 simplicity: principle of Occam's Razor, removal

of redundant terms results in a simpler model

 unnecessary terms will cost d.f. and add noise to the estimation of other 

quantities  less precise test/C.I. and tend to increase the standard error

 collinearity reduction: collinearity is caused by 

having too many terms trying to do same job

 save cost : if model is used for prediction, can save time

and/or money by not measuring redundant terms

• preliminary steps before performing variable selection

 identify outliers and influential points --- may exclude them temporarily

 add any terms, transformations, or (linear) combinations of 

the predictors or extra predictors that seem appropriate

• two types of variable selection procedures: testing-based and criterion-based

• testing-based procedure

 Recall: 

 the p-value of t-test is an index of effect significance/importance

 cannot simultaneously remove terms with insignificant p-values

 backward elimination: (1) start with full model (all terms); (2) eliminate the 

term with the largest p-value greater than “α-to-remove" preset value; 

(3) refit the model and go to step (2); (4) stop when all p-values < α-to-remove
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p. 9-3

 forward selections: (1) start with no terms in the model (y∼1); 
(2) For terms not in the model, check their p-values if they are added to the model. 

Add the term with the smallest p-value less than “α-to-enter" preset value; 

(3) refit the model and go to step (2); (4) stop when all the p-values > α-to-enter

 stepwise regression: a combination of forward and backward and there are several 

variations on exactly how this is done. Roughly speaking, at any step, it can 

(1) select a new term, according to “α-to-enter", or (2) remove a term from model, 

according to “α-to-remove", or (3) stop

 drawbacks:

 may miss "optimal" model because of its "one-at-a-time" adding/dropping

 α-values (α-to-enter and α-to-remove) should not be treated 

too literally: because of multiple testing occurring

 removal of less significant terms tends to increase the 

significance of the remaining terms  may lead to 

overstate the importance of the remaining terms

 The procedure is not directly linked to final objectives of 

regression, such as prediction or interpretation. It's only 

based on statistical significance of testing in its selection.

 for prediction purpose, testing-based procedure 

tends to pick smaller models than desired

p. 9-4• criterion-based procedure (k: # of all parameters, including intercept; 

p: # of parameters in a sub-model; mp: a sub-model with p parameters): 

 pick a criterion for judging the worth of a sub-model, consider 

all possible sub-models and pick those with best values of the criterion

 # of all possible sub-models=2k−1  if k is large, computation may be 

too expensive, clever algorithm like "branch-and-bound" method can avoid it

 adjusted R2 (denoted by Ra
2) criterion: for a sub-model mp,

R2 = 1- (RSS/TSS): not good, adding terms always increase R2

Ra
2 = 1- {[RSS/(n- p)]/[TSS/(n- 1)]} = 1- [(n- 1)/(n- p)](1- R2) = 1-

 will only increase when a term has some value

 larger Ra
2 is better [notice the connection between Ra

2 and ]

 PRESS (Predicted REsidual Sum of Square) criterion

PRESS = , where are non-standardized jacknife residuals

 smaller value of PRESS is better

 more expensive computation than Ra
2

 tends to pick bigger models ( may be desirable for prediction purpose)
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 Akaike Information Criterion (AIC) and Bayes Information Criterion (BIC)

AIC = −2(maximized log-likelihood) + 2 p

BIC = - 2(maximized log-likelihood) + log(n) p

for linear model, - 2(maximized log-likelihood) = n log(RSSmp/n) + constant
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p. 9-5

 cheap to compute

 closely related to Ra
2 and AIC, BIC

 under full model: RSS{full model} = (n–k)       ,  so Ck = k for full model 

 for sub-models that fit: E(RSSmp) = (n–p)σ2, so Cp ≈ p, 

i.e., Cp close to p implies the sub-model fits

 for sub-models that do not fit: E(RSSmp) >> (n–p)σ2 and Cp >> p

 it's usual to plot Cp against p. Models with small p

and Cp around the Cp=p line or less than p are desirable
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 Mallow's Cp statistics: MSE of prediction, 

(1/σ2) Σi E[ − E(yi) ]2

would be a good criterion, which can be estimated by:

Cp = RSSmp
/ + 2p – n,

where estimated from the model with all terms (full model) 

and RSSmp is obtained from a sub-model mp

 smaller value of AIC or BIC is better

 get a balance between model fit and model size: BIC penalizes larger models
more heavily than AIC  BIC tends to prefer smaller models

 Note: Cp, Ra
2, AIC, BIC all trade-off fit in terms of RSSmp against complexity (p) 

 we prefer models with smaller RSSmp and smaller p; however, RSSmp↓ as p↑

σ̂
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p. 9-6

• ambiguity about the best model is possible. When several candidate models exist:

 check if models make similar predictions? if yes, can make decision on the 

basis of cost; if no, do not pick one model arbitrary. Report a range of models.

 interpretations qualitatively similar? if not, avoid strong conclusion and 

report a range of models

 examine which has the best diagnostics

• Notes:

 terms not in final model can still be correlated with the response

 not to say they are unrelated to the response; 

 better to say they provide no additional explanatory effect

beyond those terms included in final model

 It's important to keep in mind that model selection should 

not be divorced from the underlying purpose of investigation

 automatic variable selection are not guaranteed to be 

consistent with your goals. Use these methods as a guide only.

 these methods do not consider the natural hierarchy in some models: For 

example, in polynomial model, higher-order terms (such as x1
2, x2

2, x1x2) should 

be considered only when corresponding lower-order terms (such as x1 and x2) 

have been included in the model  not all sub-models are candidate models

 Reading: Faraway (1st ed.), chapter 8; W, 10.2, 10.3, 10.4  Further reading: D&S, chapter 15
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