NTHU STAT 5410, 2022

$\stackrel{\bullet}{\sim} ridge estimator is biased \stackrel{\bullet}{\leftarrow} OLS est'or \hat{f}_{o} is BLUE, but tr[cov(\hat{f}_{o})] = \stackrel{p. 9-16}{\to}$
$(F^{T}F+\lambda \mathbf{I})^{-1}F^{T}E(\mathbf{Z})=E(\hat{\boldsymbol{\gamma}}_{\lambda})=\boldsymbol{\gamma}-\lambda(F^{T}F+\lambda \mathbf{I})^{-1}\boldsymbol{\gamma} \implies \operatorname{Bias}(\hat{\boldsymbol{\gamma}}_{\lambda})=-\lambda(F^{T}F+\lambda \mathbf{I})^{-1}\boldsymbol{\gamma} \mathfrak{S}^{2}\sum_{l=1}^{P}\frac{1}{\lambda_{l}}$
$(F^{7}_{F+\lambda I})$ Total of variances: $tr[cov(\hat{\gamma}_{\lambda})] = \sigma^{2} \Sigma_{i} \lambda_{i} (\lambda_{i} + \lambda)^{-2}$ use (Δ) in LNp.15
$E(\hat{\theta}-\theta)^{2} \checkmark \underline{Mean Square Error}: \underbrace{trace = sum of}_{eigenvalues} cov(\hat{f}_{\lambda}) = E^{*}(\hat{f}_{\lambda}\hat{f}_{\lambda}) = \sigma^{2}(F^{T}F+\lambda I)^{-1}(F^{T}F)(F^{T}F+\lambda I)^{-1}$
$\frac{\text{MSE}(\hat{\gamma}_{\lambda}) = \text{E}[(\hat{\gamma}_{\lambda} - \gamma)(\hat{\gamma}_{\lambda} - \gamma)^{T}] = \text{cov}(\hat{\gamma}_{\lambda}) + \text{Bias}(\hat{\gamma}_{\lambda}) \text{Bias}(\hat{\gamma}_{\lambda})^{T} \xrightarrow{\text{tr}} \ \text{Bias}(\hat{\gamma}_{\lambda})^{T}\ _{1}^{1}$
$\frac{1}{\text{Total}} \text{ Mean Square Error: } \underline{\text{tr}[MSE(\hat{\gamma}_{\lambda})]} = \underline{\text{tr}[\text{cov}(\hat{\gamma}_{\lambda})]} + \underline{\lambda^2 \gamma^T (F^T F + \lambda I)^{-2} \gamma}$
The total MSE of ridge estimator can be lower than OLS estimator when
strong collinearity exists; the price we pay is, of course, the bias.
• why ridge regression can work? \Rightarrow add <i>additional information</i> to remove collinearity. The following conditions, that all load to ridge estimator, can offer some insights:
The following conditions, that all lead to ridge estimator, can offer some insights: Suppose \exists on myn metrix V at $VTF = 0$ and $VTT = 0$. Let $W_{cond} = \frac{31/2}{2} V (VTV) = \frac{1}{2}$
Suppose \exists an $\underline{n \times p}$ matrix \underline{V} s.t. $\underline{V^T F = 0}$ and $\underline{V^T Z = 0}$. Let $\underline{W}_{\underline{n \times p}} = \underline{\lambda^{1/2}} \underline{V} (\underline{V^T V})^{-1/2}$. Then, (1) $W^T W = \lambda I$, (2) $W^T F = 0$, and (3) $W^T Z = 0$. The OLS estimator of the
$\frac{1}{\text{model}}; (I) \xrightarrow{\mu} \mu \mu \mu, (I) \xrightarrow{\mu} \mu$
$\mathbf{Z} = \mathbf{F}\mathbf{L} + \mathbf{E} \overset{\text{cf.}}{\overset{\text{f.}}{\overset{f.}}{\overset{f.}{\overset{f.}}{\overset{f.}}{\overset{f.}{\overset{f.}}{\overset{f.}}{\overset{f.}}{\overset{f.}{\overset{f.}}{\overset{f.}{\overset{f.}}{\overset{f.}}{\overset{f.}}{\overset{f.}{\overset{f.}}{\overset{f.}}{\overset{f.}}{\overset{f.}{\overset{f.}}{\overset{f.}}{\overset{f.}}{\overset{f.}}{\overset{f.}{\overset{f.}}}{\overset{f.}}{\overset{f.}}{\overset{f.}}{\overset{f.}}{\overset{f.}}}}}}}}}}$
\Rightarrow suitably <i>disturbing</i> F by a small amount to remove strong collinearity
Consider the model $\underline{Z} = \underline{F} \gamma + \varepsilon$, where $\underline{Z}_{anx} = [\underline{Z}^T \underline{0}]^T$, $\underline{F}_{anx} = [\underline{F}^T \underline{W}^T]^T$.
Its <u>OLS estimator</u> is: $[\cdot_{O}]$ \Rightarrow = $F^{T}Z + W^{T}Q$ $F^{T}F = F^{T}F + W^{T}W$
present additional information — $(\underline{F}^T \underline{F})^{-1} \underline{F}^T \underline{Z} = (\underline{F}^T \underline{F} + \lambda \underline{I})^{-1} \underline{F}^T \underline{Z} = F^T F + \lambda \underline{I}$
\Rightarrow <u>adding additional "cases"</u> to the <u>data set</u> to <u>remove strong collinearity</u>
• Minimize $RSS = (Z - F\gamma)^T (Z - F\gamma)$ subject to this constraint $\gamma^T \gamma \le c^2$.
The solution is the ridge estimator that satisfies $\hat{\gamma}_{\lambda}^{T} \hat{\gamma}_{\lambda} = c_{\lambda}^{2} + c_{\lambda}^{T} \hat{\gamma}_{\lambda} = c_{\lambda}^{T} $
The solution is the ridge estimator that satisfies $\hat{\gamma}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} \hat{v}_{i,\lambda} = c$ shrinkage This explains why need to meaning?
The solution is the ridge estimator that satisfies $\hat{\gamma}_{\lambda}^{T} \hat{\gamma}_{\lambda} = c^{2} + c$
The solution is the ridge estimator that satisfies $\hat{\gamma}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} = \hat{\beta}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm} + \frac{1}{2} \cdot \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \frac{1}{2} \cdot \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \frac{1}{$
The solution is the ridge estimator that satisfies $\hat{\gamma}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + \frac{1}{2} \cdot \text{norm}$ shrinkage This explains why need to meaning? Bayesian viewpoint: put a multivariate normal prior $N(0, \lambda^{-1}I)$ on γ . Bayes estimator is the ridge estimator. \Rightarrow choice of a larger λ implies γ were more likely to be small, and vice versa.
The solution is the ridge estimator that satisfies $\hat{\gamma}_{\lambda} \hat{\gamma}_{\lambda} = c^2 + l^2 \cdot \text{norm} + c^2 + l^2 \cdot n$
 Willing (Z=1) (Z=1) subject to this constraint γ = c. The solution is the ridge estimator that satisfies ŷ^T_λŷ_λ=c²+C norm + for form + form +
The solution is the ridge estimator that satisfies $\hat{\gamma}_{\lambda}\hat{\gamma}_{\lambda}=c^{2}+i^{2}$ norm $\langle \hat{\gamma}_{\lambda},\hat{\gamma}_{\lambda}=c^{2}+i^{2}-norm$ $\langle \hat{\gamma}_{\lambda},\hat{\gamma}_{\lambda}=c^{2}+i^{2}-i^$
 Numinize Ros (2-17) (2-17) sige (1-6) = for signation of the solution in the ridge estimator that satisfies y
 The solution is the ridge estimator that satisfies shrinkage this explains why need to methods standardize × (x → F) meaning? Bayesian viewpoint: put a multivariate normal prior N(0, λ⁻¹I) on γ. distribution distribution then, the Bayes estimator is the ridge estimator. ⇒ choice of a larger λ implies γ were more likely to be small, and vice versa. an implicit pre-assumption in ridge regression: coefficients ridge estimate of filling estimate to be very large to be very large estimate to be very large estimate to be very large estimate to be very large to be very large estimate to be very large estimat
 Winninze Riss of the ridge estimator that satisfies Ŷ₁ Ŷ₂ = c² + 1 · norm + 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1
 Willing Riss (2 = form: (1-for) = for (1) s constraint (1 = 2). The solution is the ridge estimator that satisfies (1/2) for (1) = c = c = c = c = c = c = c = c = c =
 Infinitize Riss (2 - form: (f-fa) = form:
 Willing Riss (2 = form: (1-for) = for (1) s constraint (1 = 2). The solution is the ridge estimator that satisfies (1/2) for (1) = c = c = c = c = c = c = c = c = c =
 Winninze KSS (2-1) and the forms: (t-fa) = F(t-fa) = constant f(x) = c = t = norm + f(x) = norm + f(x) = c = t = norm + f(x) = norm + f(x)
 Winning Riss (2-1) (
 The solution is the ridge estimator that satisfies ŷ²_λŷ²_λ = c²_λ (¹/_λ norm + f²) (1 ≤ 1) (

NTHU STAT 5410, 2022 Lecture Notes p. 9-18 • a recommended analysis strategy: final fitted model a reasonable Diagnostics Transformation Variable Selection Diagnostics Stop regression model sensitive to unusual obsevations Note: there is no hard-and-fast rules about how it should be done. Regression analysis is a search for structure in data. Better to try a variety of orders. • Danger of doing too much analysis. More transformations, permutations of leaving out influential points and outliers you have done, better fitting model you will find --however, may lead to over-fitting or no guarantee that the model is a good representation of the underlying system. training data "If you torture the data validation data-> avoid complex models for small dataset long enough, it will test data. confess to anything." try to obtain new data to validate your proposed model use past experience with similar data to guide the choice of model • model multiplicity: Same data can support different models, that sometimes lead to different conclusions. Personal preference, different analysis strategy, or changes in order of analysis components may result in different models. Always try to Bayesian approach take a second independent look at the data. \rightarrow model averaging for prediction purpose \leftarrow model uncertainty: Usually, inferences are based on the assumption that the selected final model was fixed in advance and so only reflect uncertainty concerning the parameters of that fixed model. Q: should we consider the variation caused by model multiplicity? From this viewpoint, the reported standard errors are usually too small.

✤ Reading: Faraway (1st ed.), chapter 10