
p. 9-1

• Q: what is a “model selection” problem? 

 consider the full model: 

For 1≤ i ≤ k−1, should the term βigi be included in the final fitted model?

Model (variable) selection

(sub-)model: a subset set of all 
k−1 terms, e.g.,

{1, g1, g2},

{1, g2, g4, g5, gk−1}, … 

 p = # of parameters in a 
sub-model

 # of different sub-models = 2k−1

hierarchical structure of 
all sub-models (see graph)

objective of model selection: select 
a "best" sub-model

Q: what is a good sub-model? We 

usually hope a good model to have

 high R2 .

 not too many terms

 terms with significant t-tests



Example: 6 terms, I, Y, p, E, R, T

p. 9-2• Q: why bother to select a best subset of all terms?

 simplicity: principle of Occam's Razor, removal

of redundant terms results in a simpler model

 unnecessary terms will cost d.f. and add noise to the estimation of other 

quantities  less precise test/C.I. and tend to increase the standard error

 collinearity reduction: collinearity is caused by 

having too many terms trying to do same job

 save cost : if model is used for prediction, can save time

and/or money by not measuring redundant terms

• preliminary steps before performing variable selection

 identify outliers and influential points --- may exclude them temporarily

 add any terms, transformations, or (linear) combinations of 

the predictors or extra predictors that seem appropriate

• two types of variable selection procedures: testing-based and criterion-based

• testing-based procedure

 Recall: 

 the p-value of t-test is an index of effect significance/importance

 cannot simultaneously remove terms with insignificant p-values

 backward elimination: (1) start with full model (all terms); (2) eliminate the 

term with the largest p-value greater than “α-to-remove" preset value; 

(3) refit the model and go to step (2); (4) stop when all p-values < α-to-remove
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 forward selections: (1) start with no terms in the model (y∼1); 

(2) For terms not in the model, check their p-values if they are added to the model. 

Add the term with the smallest p-value less than “α-to-enter" preset value; 

(3) refit the model and go to step (2); (4) stop when all the p-values > α-to-enter

 stepwise regression: a combination of forward and backward and there are several 

variations on exactly how this is done. Roughly speaking, at any step, it can 

(1) select a new term, according to “α-to-enter", or (2) remove a term from model, 

according to “α-to-remove", or (3) stop

 drawbacks:

 may miss "optimal" model because of its "one-at-a-time" adding/dropping

 α-values (α-to-enter and α-to-remove) should not be treated 

too literally: because of multiple testing occurring

 removal of less significant terms tends to increase the 

significance of the remaining terms  may lead to 

overstate the importance of the remaining terms

 The procedure is not directly linked to final objectives of 

regression, such as prediction or interpretation. It's only 

based on statistical significance of testing in its selection.

 for prediction purpose, testing-based procedure 

tends to pick smaller models than desired

p. 9-4• criterion-based procedure (k: # of all parameters, including intercept; 

p: # of parameters in a sub-model; mp: a sub-model with p parameters): 

 pick a criterion for judging the worth of a sub-model, consider 

all possible sub-models and pick those with best values of the criterion

 # of all possible sub-models=2k−1  if k is large, computation may be 

too expensive, clever algorithm like "branch-and-bound" method can avoid it

 adjusted R2 (denoted by Ra
2) criterion: for a sub-model mp,

R2 = 1- (RSS/TSS): not good, adding terms always increase R2

Ra
2 = 1- {[RSS/(n- p)]/[TSS/(n- 1)]} = 1- [(n- 1)/(n- p)](1- R2) = 1-

 will only increase when a term has some value

 larger Ra
2 is better [notice the connection between Ra

2 and ]

 PRESS (Predicted REsidual Sum of Square) criterion

PRESS = , where are non-standardized jacknife residuals

 smaller value of PRESS is better

 more expensive computation than Ra
2

 tends to pick bigger models ( may be desirable for prediction purpose)
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 Akaike Information Criterion (AIC) and Bayes Information Criterion (BIC)

AIC = −2(maximized log-likelihood) + 2 p

BIC = - 2(maximized log-likelihood) + log(n) p

for linear model, - 2(maximized log-likelihood) = n log(RSSmp/n) + constant
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 cheap to compute

 closely related to Ra
2 and AIC, BIC

 under full model: RSS{full model} = (n–k)       ,  so Ck = k for full model 

 for sub-models that fit: E(RSSmp) = (n–p)σ2, so Cp ≈ p, 

i.e., Cp close to p implies the sub-model fits

 for sub-models that do not fit: E(RSSmp) >> (n–p)σ2 and Cp >> p

 it's usual to plot Cp against p. Models with small p

and Cp around the Cp=p line or less than p are desirable
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 Mallow's Cp statistics: MSE of prediction, 

(1/σ2) Σi E[ − E(yi) ]2

would be a good criterion, which can be estimated by:

Cp = RSSmp
/ + 2p – n,

where estimated from the model with all terms (full model) 

and RSSmp is obtained from a sub-model mp

 smaller value of AIC or BIC is better

 get a balance between model fit and model size: BIC penalizes larger models
more heavily than AIC  BIC tends to prefer smaller models

 Note: Cp, Ra
2, AIC, BIC all trade-off fit in terms of RSSmp against complexity (p) 

 we prefer models with smaller RSSmp and smaller p; however, RSSmp↓ as p↑

σ̂
2

full
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• ambiguity about the best model is possible. When several candidate models exist:

 check if models make similar predictions? if yes, can make decision on the 

basis of cost; if no, do not pick one model arbitrary. Report a range of models.

 interpretations qualitatively similar? if not, avoid strong conclusion and 

report a range of models

 examine which has the best diagnostics

• Notes:

 terms not in final model can still be correlated with the response

 not to say they are unrelated to the response; 

 better to say they provide no additional explanatory effect

beyond those terms included in final model

 It's important to keep in mind that model selection should 

not be divorced from the underlying purpose of investigation

 automatic variable selection are not guaranteed to be 

consistent with your goals. Use these methods as a guide only.

 these methods do not consider the natural hierarchy in some models: For 

example, in polynomial model, higher-order terms (such as x1
2, x2

2, x1x2) should 

be considered only when corresponding lower-order terms (such as x1 and x2) 

have been included in the model  not all sub-models are candidate models

 Reading: Faraway (1st ed.), chapter 8; W, 10.2, 10.3, 10.4  Further reading: D&S, chapter 15
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• Recall: Y=Xβ +ε, where ε is error that represent measurement error or unexplained 

variation in Y, and “it’s assumed that X are fixed values measured without error.”

• Q: what if X are measured or observed with error? (examples)

Note: compare the difference between the 2 statements: "X measured with errors" 

and "X are random variables, such as in sampling model"

• Q: what happens if you ignore errors in X and still use 

OLS estimator? Let us consider a simple example:

 Q: Is minimizing RSS (i.e., OLS) still reasonable for ∆ data?

×: "fine" value, no error in predictor

and response, but not observed

○: observations with error only in 

response, but not error in predictor

∆: observations with error in both 

response and predictor

Errors in the predictor

 a statistical model for ∆ data: 

ideal "true" relationship is ηi=β0+β1ξi , 

but observe yi=ηi+εi and xi=ξi+δi, 

where ε and δ are errors of response and predictor respectively, i.e., 

yi=β0+β1ξi+εi=β0+β1xi+(εi- β1δi)

×: (ξi, ηi)

○: (ξi, yi)

∆: (xi, yi)

p. 9-8
 Q: what problem if we use ordinary least square to estimate β1 in the model?

 Let's assume E(εi)=E(δi)=0, var(εi)=σ2, var(δi)=σδ
2 and cov(ε ,δ)=0

 Let σξ
2=Σ(ξi - )2/n (Note: when ξi’s are not random, we could regard it as a 

measure of the spread of the predictor), σξδ=cov(ξ ,δ) and assume cov(ξ ,ε)=0

 the OLS estimator of β1 is:

. = [Σ(xi - )(yi - )]/ Σ(xi - )2

 after some calculation, we can write

E(     ) ≈ β1 × [( σξ
2+σξδ )/( σξ

2+σδ
2+2σξδ )]

 if no relation between ξ and δ (i.e., cor(ξ ,δ)=0), 

E(     ) ≈ β1 ×[σξ
2 /(σξ

2+σδ
2)] = β1 ×[1/(1+σδ

2/σξ
2)]  is biased
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 typically, bias in        is towards zero

 size of the bias depends mainly on the ratio σδ
2/σξ

2 (i.e., variability in the 

errors of predictor relative to the spread of predictor)       (Q: why reasonable?)

 ratio is small  no worry

 ratio is large,         is underestimated  use measurement error model

• For multiple predictors, the usual effect of measurement errors on predictors is to 

bias the estimator of β in the direction of zero

• Prediction is not biased since future X will also be measured with errors. 

So, model for prediction should be built on X's measurement with error.

β
1

ˆ

 Reading: Faraway (1st ed.), 5.1; W, 4.6.3  Further reading: D&S, 3.4, 9.7

y
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• collinearity: predictors are (linearly) related to each other

 XTX is singular  some predictors are linear combinations of others

 (exact) collinearity  no unique estimate of β
 XTX close to singular  close to linear dependent among some predictors

 (approximate) collinearity or multicollinearity

• effect of collinearity:

 estimated effects are unstable (can change magnitude or sign depending on the 

other predictors in the model)  interpretation of estimated coefficients difficult

 cause numerical problem in estimating β and associated quantities

 var(    ) = σ2 (1/(1- Rj
2)) (1/Sj), where Sj = Σi (gij- )2 and Rj

2 is the coefficient of

determination obtained from regressing gj on all other predictors  when Rj
2≈1, 

var(    ) large  t-test may fail to reveal significance, i.e., miss important gj

 variance inflation factor: VIFj = 1/(1- Rj
2)  when Sj is fixed, VIFj represents the 

increase in variance due to the collinearity (e.g., interpret VIFj=16?)

β̂
j

g j

Collinearity

β̂
j

• detection of collinearity:

 examine correlations between predictors, i.e., cor(gk, gj)

 any values close to 1 or –1 reveal pairwise correlation

 for each gj, regress gj on all other predictors and compute Rj
2 or VIFj

 Rj
2 close to one or VIFj much larger than one indicate a problem of collinearity

p. 9-10

 examine eigenvalues, λ1≥…≥λp, of XTX  small eigenvalues indicate a problem

 condition number: k=(λ1/λp)
1/2

 rough rule: k > 30 is considered large

 for each i, (λ1/λi)
1/2 are worth considering  there may exist more than one

linear combination relationship between predictors

 eigenvectors of small eigenvalues indicate possible source of collinearity

• how to deal with collinearity: 

 identify the cause of collinearity in data

 amputate some predictors if you can --- remember that collinearity happens 

because too many variables try to do the same job of explaining the response

 do not conclude the predictors we drop have nothing to do with the response

 techniques such as principle component regression, ridge regression, partial least 

squares, …, may help
 Reading: Faraway (1st ed.), 5.3; W, 10.1 
 Further reading: D&S, 16.1, 16.4, 16.5

Principal components

• Recall: Y=Xβ +ε. If X is orthogonal (i.e., XTX is a diagonal matrix), then 

estimation, testing, and parameter interpretation are greatly simplified.

• idea: For non-orthogonal X, replace Y=Xβ+ε by Y=Zβ’ +ε, where Z is a linear 

combinations of X (i.e., Zn×q=Xn×pUp×q, p≥q) and Z is orthogonal (ZTZ is diagonal)
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• orthogonality

Recall: 

bivariate 

normal

see graph, in which z1 is the projection of points on the 

direction u1; z2 is the projection of points on the direction u2

• concept of dimension reduction: 

 Q: take a look of the graph, the points are of 1-dim or of 2-dim?

 very similar to a line  high correlation  data is 2-dim, but close to 1-dim

 replace large number of columns in X with small number of columns in Z

 simpler model, especially useful (1) when few linear combinations of X are 

enough to represent the variation in X; (2) when p > n

• Zn×q= Xn×pUp×q, p≥q, e.g., take a look of the first column of Z

p. 9-12• principal component (PC): 

transform X to Z which is orthogonal, but how?

find U such that ZTZ is diagonal, i.e., ZTZ = diag(λ1,..., λp),  where λ1≥...≥λp ≥0

since ZTZ=UT(XTX)U, to make ZTZ diagonal, we can choose columns of U are 

orthogonal eigenvectors of XTX, then the λ1, λ2, ..., λp are eigenvalues of XTX

 let Uj and λj be the j-th eigenvector and eigenvalue of XTX, then (XTX)Uj=λj Uj

 Uk
TUj = 0 for k≠j and ||Uj||=1 for all j

 Uk
T (XTX)Uj=λjUk

TUj, which equals 0 if k≠j and equals λj if k=j

another way to look at it:

 Z1 = linear combination of columns

of X that has maximum length2, i.e, 

maximizing Σzi1
2 (variation of Z1)

 Z2 = linear combination of columns

of X that is orthogonal to Z1 and 

has maximum length2

 Z3 = linear combination of columns

X that is orthogonal to Z1, Z2 and 

has maximum length2

 …

 some properties:

 UTU=Iq×q

 zero eigenvalue  unidentifiable

 λj = length2 of Zj = Σi zij
2 [note: when 

E(Xj)=0  E(Zj)=0  λj ∝ var(Zj)]

 λ1+...+λp= tr(XTX) = Σj(length2 of Xj)

[note: when E(Xj)=0, 

λ1+...+λp ∝ Σj var(Xj): total variation]

 λj/(λ1+...+λp) = proportion of 

total variation explained by the jth PC

 Z1 (=1st column of Z) is called 1st principal component (PC), 

Z2 (=2nd column of Z) is called 2nd principal component (PC), ...
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 Q: how to interpret Z1, Z2,..., Zp? Ans: compare the coefficients in eigenvectors

 Ex 1: Z1=0.46GNP+0.32UnEm+0.46POP+0.46Year+...  hard to give meaning

 Ex 2: Z1=0.63(hw1)+0.57(hw2)+0.52(hw3) ∝ average homework scores; 

Z2 = 0.67(hw1)+0.08(hw2)- 0.75(hw3) ∝ difference between hw 1 and 3 scores

XTX without constant term

covariance matrixcorrelation matrix

• variation on principal components

 use XTX with/without constant term (without constant 

term  PC's may not be orthogonal to constant term)

 use covariance matrix of X (without constant term), 

i.e., X
v
TX

v
/(n−1) where X

v
is formed by centering 

each gj, to find eigenvectors U and eigenvalues. Then, 

λj = var(zj). The transformation U can be applied on 

X or X
v

[PC's are orthogonal to constant term if 

transformation is applied on X
v
]

 use correlation matrix of X (without 

constant term), i.e, X
r
TX

r
/(n−1),

where X
r

is formed by standardizing

each gj. To make sense, the 

transformation should be applied on 

X
r

.Then, λj = var(zj) and PC's are 

orthogonal to constant term

p. 9-14• Notes: 

 interpretation is a problem --- little is gained if 
principal components are not interpretable

 how many principal components are worth considering? plot λi, often the plot has 

a noticeable "elbow" --- the point, say k, at which further eigenvalues are 

negligible in size compared to the earlier ones  (λ1+...+λk)/(λ1+...+λp) = 

proportion of total variation explained by the first k principal components

 principal components do not use information from the response in 

dimension reduction. It is possible that a lesser principal component is actually 

very important in explaining/predicting the response. Dimension-reduction 

methods that utilize information about the response exist, such as 
 partial least square
 sliced inverse regression (SIR)
 principal Hessian directions (pHd)
 projection pursuit regression
 canonical correlation analysis
 LASSO

 Reading: Faraway (1st ed.), 9.1

Ridge regression

• Q: what is the problem? strong collinearity (i.e., XTX close to singular) causes (1) 

numerical problem in calculating (XTX)- 1; (2) unstable; (3) large variance in .β̂ β̂
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• ridge regression: a method of combating strong collinearity [Note: It would be 

better to find out how collinearity occurs before doing ridge regression.]

centering and scaling predictors: X → F, i.e., FTF = correlation matrix of X

(Q: why?), and centering response: Y → Z, i.e., Z = Y- ,

y = β0 + β1 x1 + ... + βp xp + ε  Y = X β + ε
z = γ1 f1 + ...+ γp fp + ε  Z = F γ + ε

Note: βi = γi/sdi, where sdi is the sample standard deviation of xi, i=1, ..., p

 ridge estimator: for λ>0, = (FTF+λI)- 1FTZ = (FTF+λI)- 1FTY [note: FT1=0]

 λ=0  is the OLS estimator and λ→∞  .

 for an eigenvector ui of FTF and its corresponding eigenvalue λi, 

(FTF+λI)ui = (λi+λ)ui  ui is an eigenvector of (FTF+λI) with 

corresponding eigenvalue λi+λ (>λi)
 ridge estimator can remedy the problems caused by strong collinearity

γ̂
λ

Y

0=∞γ̂γ̂
0

 how to choose an appropriate λ? 

There exists various methods automatically choosing a λ. 

However, the most popular method is through ridge trace: 

plot against λ
Find a minimum value of λ (usually chosen in [0, 1]) 

after which are moderately stable. 

γ̂ λ

γ̂ λ
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 ridge estimator is biased

E( ) = γ – λ(FTF+λI)- 1γ  Bias(    ) =−λ(FTF+λI)- 1γ
Total of variances:  tr[cov(    )] = σ2 Σj λj (λj+λ)- 2

Mean Square Error: 

MSE(    ) = E[( - γ)( - γ)T] = cov(    ) + Bias(    ) Bias(    )T

Total Mean Square Error: tr[ MSE(     ) ] =  tr[cov(    )] + λ2γ T(FTF+λI)- 2γ
The total MSE of ridge estimator can be lower than OLS estimator when 

strong collinearity exists; the price we pay is, of course, the bias. 

• why ridge regression can work?  add additional information to remove collinearity. 

The following conditions, that all lead to ridge estimator, can offer some insights:

γ̂ λ γ̂ λ

γ̂ λ

γ̂ λγ̂ λ γ̂ λ γ̂ λ γ̂ λ γ̂ λ

γ̂ λ γ̂ λ

 Suppose ∃ an n×p matrix V s.t. VTF=0 and VTZ=0. Let Wn×p=λ1/2 V (VTV)- 1/2 . 

Then, (1) WTW=λI, (2) WTF=0, and (3) WTZ=0. The OLS estimator of the 

model: Z = (F+W) γ + ε is:

[(F+W)T(F+W)]- 1(F+W)TZ = (FTF+λI)- 1FTZ

 suitably disturbing F by a small amount to remove strong collinearity

 Consider the model Z = F γ + ε , where Z = [ZT 0]T, F = [FT WT]T. 

Its OLS estimator is:

(FTF)- 1FTZ = (FTF+λI)- 1FTZ

 adding additional "cases" to the data set to remove strong collinearity
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c
2

λ

T

λ =γγ ˆˆ

 Bayesian viewpoint: put a multivariate normal prior N(0, λ- 1I) on γ . 

Then, the Bayes estimator is the ridge estimator.  choice of a larger λ
implies γ were more likely to be small, and vice versa. 

• an implicit pre-assumption in ridge regression: coefficients

(after normalizing) are not likely to be very large

 Reading: Faraway (1st ed.), 9.3  Further reading: D&S, chapter 17

• you have learned

 Parameter estimation and testing: LS estimator, generalized (weighted) LS, 

ridge estimator, t-test, F-tests, lack-of-fit, C.I., R2, prediction, ...robustestimator, 

 Diagnostics (checking assumptions): such as constant variance, linearity, 

normality, outliers, influential points, serial correlation, collinearity, ...

 Transformation: transforming the response and/or the predictors, Box-Cox, 

polynomial regression, broken line, spline, principal component, ...

 Variable selection: testing-based and criterion-based procedures

• Q: what order should these be done? should procedures be repeated at later stage? 

when should we stop?

Analysis strategy and model uncertainty

 Minimize RSS=(Z−Fγ)T(Z−Fγ) subject to this constraint γTγ ≤ c2. 

The solution is the ridge estimator that satisfies .

p. 9-18• a recommended analysis strategy:

Note: there is no hard-and-fast rules about how it should be done. 

Regression analysis is a search for structure in data. Better to try a variety of orders.

Diagnostics Transformation Variable Selection Diagnostics Stop
a reasonable 

regression model

• Danger of doing too much analysis. More transformations, permutations of leaving 

out influential points and outliers you have done, better fitting model you will find ---

however, may lead to over-fitting or no guarantee that the model is a 

good representation of the underlying system.

 avoid complex models for small dataset

 try to obtain new data to validate your proposed model

 use past experience with similar data to guide the choice of model

• model multiplicity: Same data can support different models, that sometimes lead to 

different conclusions. Personal preference, different analysis strategy, or changes in 

order of analysis components may result in different models. Always try to 

take a second independent look at the data.

• model uncertainty: Usually, inferences are based on the assumption that the selected 

final model was fixed in advance and so only reflect uncertainty concerning the 

parameters of that fixed model. Q: should we consider the variation caused by model 

multiplicity? From this viewpoint, the reported standard errors are usually too small.

 Reading: Faraway (1st ed.), chapter 10

“If you torture the data

long enough, it will 

confess to anything.”


