- estimation of $\underline{\lambda}$: choose $\underline{\lambda}$ to fit data well using maximum likelihood.
- can compute $L(\lambda)$ for various values of $\underline{\lambda}$ and compute $\hat{\lambda}$ exactly to maximize $L(\lambda) \quad$ But. it's ok for prediction purpose $\frac{2}{2} \hat{\lambda}_{\text {MLE }}$ $\because B$ Bax-Cox \square but usually $\hat{\lambda}$ is not a nice round number, e.g., $\hat{\lambda}=-0.17$. It would be transformation
is easy to hard to explain what this new response means. to avoid this, maximize $L(\lambda)$ over a grid of values, such as $\{\underline{2}, \underline{1}, \underline{1 / 2}, \underline{0}$, $-1 \overline{2,2,-1,-2}\}$. This helps with interpretation- $\left[Y_{\lambda} \widehat{\mathrm{e}}_{\lambda}\right.$
\rightarrow for $\hat{\lambda}$ outside $[-2,2]$, pay more attention on whether
such transformation is required Note. RSS has different
- Q : why not just minimize $R S S_{\lambda}$ to estimate λ ?
- test of $\boldsymbol{\lambda}$: is the transformation really necessary?
- we can answer the question form a C.I. for $\boldsymbol{\lambda}$

口 likelihood ratio test $\left(H_{0}: \underline{\lambda}=\lambda_{0}\right.$ vs. $\left.H_{A}: \underline{\lambda \neq \lambda_{0}}\right)$:
 $\underline{\leq} \underline{1}_{1}^{2}(1-\alpha) \quad$ a $100(1-\alpha) \%$ C.I. for λ can be formed by:

$$
=\left\{\underline{\lambda} \mid L(\lambda)>L(\hat{\lambda})-(1 / 2) x_{1}^{2}(1-\alpha)\right\}
$$

व is $\lambda=1$ in the C.I.? if so, may as well stay with no transformation.

$$
\text { - if rounding } \hat{\lambda} \text {, check that rounded value is in the C.I. }
$$

$>$ transformation can be used to

- stabilize variance 4 egg. \mathbf{N}_{p}.7-11, table \quad improve fitting $\sqrt[4]{ }$ eg. $\mathbf{N N}_{\mathrm{N}} .7-15$, table
(O) make errors nearly normally distributed $<$ eeg. Box -Cox transformation
- a transformation of scale may also allow use of a simpler model - discussion in
$>$ these four goals for transformation will not always be met by the same transformation, and compromises may be required transformation of \boldsymbol{Y} can alter the error structure, e.g., and check if the residuals satisfy the conditions required for linear regression
$>$ prediction in \boldsymbol{Y}-space \Rightarrow back-transforming, same for C.I. for the prediction of \boldsymbol{Y}
$>$ It may be difficult to relate the parameters of the untransformed model to the parameters of transformed model. After transforming, regression coefficients will need to interpreted w.r.t. the transformed scale.
e.g. $y=\beta_{0}+\beta_{1} x+\varepsilon$ $t_{\lambda}(y)=\mathcal{B}_{0}^{\prime}+{ }^{\prime}{ }_{1}^{\prime} x+\varepsilon$

