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 estimation of λ: choose λ to fit data well using maximum likelihood. 

 can compute L(λ) for various values of λ and compute exactly to 

maximize L(λ)

 but usually is not a nice round number, e.g., = -0.17. It would be 

hard to explain what this new response means. 

 to avoid this, maximize L(λ) over a grid of values, such as {2, 1, 1/2, 0, 

−1/2, −1, −2}. This helps with interpretation.

 for outside [−2, 2], pay more attention on whether

such transformation is required

 Q: why not just minimize RSSλ to estimate λ?
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 test of λ: is the transformation really necessary?

 we can answer the question form a C.I. for λ
 likelihood ratio test (H0: λ = λ0 vs. HA: λ ≠ λ0):

−2[L(λ0) – L( )] ~ χ1
2 under H0

 a 100(1- α)% C.I. for λ can be formed by: 

{λ | L(λ) > L( ) - (1/2) χ1
2(1- α) }

 is λ=1 in the C.I.? if so, may as well stay with 

no transformation.

 if rounding    , check that rounded value is in the C.I.λ̂
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 some notes:

 the Box-Cox method gets upset by outliers --- e.g., 

if see =5, this is probably the reason (Q: why?)

 what if some yi<0? adding a constant

 if maxi yi/mini yi (> 1) is small, Box-Cox won’t do anything --- power

transforms are well approximated by linear transformations over short intervals

 should the estimation of λ count as an extra parameter to be 

taken account of in the degrees of freedom? --- difficult question

 Box and Cox (1964) formulate the problem of choosing λ
to make the errors as nearly like a normal sample as possible

λ̂

• transformation of predictors

 Recall: can use some graphical methods, such as added variable plots and 

partial residual plot, to offer suggestions for transforming the predictors

 could consider Box-Cox family of transformation for each predictor as follows:

 pick λ that minimizes RSSλ (Q: why only RSSλ here?) to transform xi to tλ(xi)

 repeat the procedure for each i  lot of works

 correct transformation for each predictor may depend on getting 

the others right  may need to perform the procedure for all i’s several rounds

y=β0+βi xi+Σj≠i βjxj+ε  y=β0+βi
∗ tλ(xi)+Σj≠i βjxj+ε, where tλ can be xλ or log(x)
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 a simpler method

 approximate xi
λ by xi + (λ- 1) xilog(xi) (i.e., first 2 terms in Taylor’s expansion 

of xλ w.r.t. λ) to determine the best λ  add the terms xilog(xi) to this model

 suppose xilog(xi) has regression coefficient η  test H0:η=0. 

If accept, no transformation; if rejected, do transformation

 βi
∗ xi

λ ≈ βi
∗ [ xi+(λ- 1) xilog(xi) ]  = (λ- 1)  =  (    /    )+1η̂ β̂

*

i
η̂ β̂

*

i

• Some issues in transformation

 transformation can be used to 

 stabilize variance

 make errors nearly normally distributed

 a transformation of scale may also allow use of a simpler model

 these four goals for transformation will not always be met by 

the same transformation, and compromises may be required

 transformation of Y can alter the error structure, e.g., 

additive ↔ multiplicative in exp/log. In practice, try different transformation

and check if the residuals satisfy the conditions required for linear regression

 prediction in Y-space  back-transforming, same for C.I. for the prediction of Y

 It may be difficult to relate the parameters of the untransformed model to the 

parameters of transformed model. After transforming, regression 

coefficients will need to interpreted w.r.t. the transformed scale.

 improve fitting

 Reading: Faraway (1st ed.), 7.1  Further reading: D&S, chapters 13

λ̂
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