NTHU STAT 5410, 2022



NTHU STAT 5410, 2022 Lecture Notes Known functions can do it for all xis simultaneously ..... A simpler method • approximate  $\underline{x_i^{\lambda}}$  by  $\underline{x_i} + (\underline{\lambda} - 1) \underline{x_i \log(x_i)}$  (i.e., first 2 terms in Taylor's expansion at  $\lambda = 1$  of  $\underline{x^{\lambda}}$  w.r.t.  $\underline{\lambda}$  to determine the best  $\lambda \Rightarrow$  add the terms  $\underline{x_i \log(x_i)}$  to this model suppose  $x_i \log(x_i)$  has regression coefficient  $\eta \implies \text{test } H_0: \eta = 0$ .  $\leftarrow \gamma = \beta_i^* (\lambda - 1)$ If accept, no transformation; if rejected, do transformation •  $\beta_i^* \underline{x}_i^{\lambda} \approx \beta_i^* [\underline{x}_i + (\lambda - 1) \underline{x}_i \log(\underline{x}_i)] \implies \hat{\underline{\eta}} = \hat{\underline{\beta}}_i (\lambda - 1) \implies \hat{\underline{\lambda}} = (\hat{\underline{\eta}} / \hat{\underline{\beta}}_i) + 1$ • Some issues in transformation from Xilog(Xi) I From Xi e.g., better prediction transformation can be used to stabilize variance <= g. LNp. 7-11, table = improve fitting < eg. LNp. 7-15, table <</p> make errors nearly normally distributed <-e.g. Box - Cox transformation</p> -a transformation of scale may also allow use of a simpler model - discussion in -a transformation of scale may also allow use of a simpler model - discussion in -a transformation of scale may also allow use of a simpler model - discussion in -a transformation of scale may also allow use of a simpler model - discussion in -a transformation of scale may also allow use of a simpler model - discussion in -a transformation of scale may also allow use of a simpler model - discussion in -a transformation of scale may also allow use of a simpler model - discussion in -a transformation of scale may also allow use of a simpler model - discussion in -a transformation of scale may also allow use of a simpler model - discussion in -a transformation of scale may also allow use of a simpler model - discussion in -a transformation of scale may also allow use of a simpler model - discussion in -a transformation of scale may also allow use of a simpler model - discussion in -a transformation of scale may also allow use of a simpler model - discussion in -a transformation of scale may also allow use of a simpler model - discussion in -a transformation of scale may also allow use of a simple may allow use of a simple may also allow use of a simple may also allow use of a simple may allow us these four goals for transformation will not always be met by - $\mathcal{L} = \mathcal{L}_{0} \chi_{1}^{\beta_{1}} \chi_{2}^{\beta_{2}} \mathcal{E}$ the same transformation, and compromises may be required → log(y) = log(Bo)+Bilog(Xi)  $\triangleright$  transformation of Y can alter the error structure, e.g., +  $\beta_2 \log(\chi_2) + \log(\varepsilon)$ additive  $\leftrightarrow$  multiplicative in exp/log. In practice, try different transformation (1. of and check if the residuals satisfy the conditions required for linear regression  $\blacktriangleright$  prediction in Y-space  $\Rightarrow$  back-transforming, same for C.I. for the prediction of Y • > It may be difficult to relate the parameters of the untransformed model to the parameters of transformed model. After transforming, regression  $e.g. = \beta_0 + \beta_1 X + \varepsilon$ coefficients will need to interpreted w.r.t. the transformed scale.  $t_{\lambda}(y) = \beta_{0}' + \beta_{1}' \chi + \varepsilon$ ✤ Reading: Faraway (1<sup>st</sup> ed.), 7.1 ✤ Further reading: D&S, chapters 13