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dummy variable (indicator variable, coding)

• categorical (qualitative) predictors

 nominal vs. ordinal

 examples: male/female, treatment/control, eye colors, blocks, ...

 qualitative in nature:

 Q: what properties can we explore for qualitative predictor? 

category i → yij , µi = E(yij)  can only study difference between µi’s

(cf., quantitative predictor)

 Q: how to fit these predictors into the format of linear regression model

Y = Xβ +ε?  Ans: dummy variables

• one dichotomous predictor: two categories

 for a dichotomous predictor C with two categories c1 and c2, define a dummy 

variable d:

 for a data set with response y, one quantitative predictor x, and one qualitative

predictor C (dummy variable d), possible models are:

model 1: y = β0 + β1d + ε,                model 2: y = β0 + β1x + ε, 

model 3: y = β0 + β1d + β2x + ε,      model 4: y = β0 + β1x + β2xd + ε, 

model 5: y = β0 + β1d + β2x + β3xd + ε

 values are symbols, no quantitative meaning

 no value exist between categories

1,    if C = c2 .

0, if C = c1 , 
d(C) = {

p. 8-12

 Q: how to interpret βi's in models 1~5?

 model 1:

 model 2:

 model 3:

 model 4:






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 model 5:



 alternative coding of dummy variable (better orthogonality)

Q: how to interpret βi's in models 1~5 under this coding?

 model 1:



 analysis strategy: start from the full model (model 5) if there are enough

degrees of freedom, and then test if some terms can be eliminated

1,      if C = c2 .

-1, if C = c1 , 
d(C) = {

 identical methodology applies for more than 2

categories and more quantitative predictors

 Q: what if data in the two categories have different variance? 

p. 8-14

 ANalysis of COVAriance: testing model 3 (Ω) against model 2 (ω) 

(more than 2 categories and more quantitative predictors is 

allowed). The quantitative predictor is called covariate and is 

expected to have the same effect in all categories. The difference

between categories is assumed to be an additive effect.

 various coding of dummy variables: 4 categories c1, c2, c3, c4 example

 consider the model: 

 properties of treatment coding:



100c4

010c3

001c2

000c1

d3d2d1

treatment coding

300c4

−120c3

−1−11c2

−1−1−1c1

d3d2d1

Helmert coding

100c4

010c3

001c2

−1−1−1c1

d3d2d1

sum coding

• one polytomous predictor: more than two categories

 for k categories, k−1 dummy variables are needed to depict the difference

between categories (one parameter is used to represent constant term)
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p. 8-15
 treats c1 as a reference

 it is convenient if a "standard" categories exists

 d1, d2, and d3 are mutually orthogonal, but not orthogonal to constant term

 properties of Helmert coding:

 constant term, d1, d2, and d3 are orthogonal when there are equal # of 

observations in each categories

 hard to interpret parameters

 may suitable for ordinal qualitative predictor



p. 8-16

 Note: the choice of coding does not affect the R2, and overall F-test

(to test H0: β1=β2=β3= 0, the three codings have same ω and Ω)

 the overall F-test is one-way ANOVA (ANalysis Of VAriance)

 Q: how to work with quantitative predictors?  identical methodology

as in 2 categories case. Q: how to interpret parameters in the case?

σ̂

 properties of sum coding:

 β0 represent overall mean

 compare each category with the overall mean

 lesser orthogonal


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 model 1:

 model 2:

 model 3:

 model 4:

 Q: how to depict the difference between µij’s?

consider the following linear models:

nij = number of observations in category A=ai and B=bj

• two qualitative predictors 

(say, A: I=3 categories a1, a2, a3; B: J=4 categories, b1, b2, b3, b4)

 number of different category combinations = 3×4 =12, 

denote their means as µij, i=1, 2, 3 and j=1, 2, 3, 4, i.e.,

p. 8-18

 model 5:

Q: how to perform interaction coding? what is interaction? 

# of parameters: 1 + 2 + 3 + 6 = 12 interaction plot: replace µij’s

by cell means

2-factor interaction

Two-way (sequential) ANOVA

 anova(y~1+A+B+A:B)

1) test ω1:model 1 (y~1) against Ω1:model 2 (y~1+A) [dfω − dfΩ =2]

2) test ω2:model 2 (y~1+A) against Ω2:model 4 (y~1+A+B) [dfω − dfΩ =3]

3) test ω3:model 4 (y~1+A+B) against Ω3:model 5 (y~1+A+B+A:B) [dfω − dfΩ =6]
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

 invariant to the choice of dummy variables if they generate same ω and Ω
 ANOVA could have different results when the order of effect sequence is changed, 

e.g., anova(y~1+B+A+A:B):

α) test ω1:model 1 (y~1) against Ω1:model 3 (y~1+B) [dfω − dfΩ =3]

β) test ω2:model 3 (y~1+B) against Ω2:model 4 (y~1+B+A) [dfω − dfΩ =2]

χ) test ω3:model 4 (y~1+B+A) against Ω3:model 5 (y~1+B+A+A:B) [dfω − dfΩ =6]

 Reading: Faraway(2015, 1st ed.), chapter 13, 14.1, 15.1  Further reading: D&S, chapters 14, 23

• identical methodology applies for more qualitative (3-factor interaction, 4-factor 

interaction, …) and quantitative predictors (similar modeling to what in LNp.8-12~13)

 anova(y~1+A+B+A:B) and 

anova(y~1+B+A+A:B) will have 

identical results when orthogonality 

exists between the 3 groups of effects: 

span{di
A’s}, span{dj

B’s}, span{dij’s},

because in the case, RSSω − RSSΩ
would equal for 1) and β),   2) and α), 

3) and χ)

p. 8-20

• transformation of response

Box-Cox transformation family:

 tλ(y) is continuous in λ: for fixed y>0, 

 λ=1  no transformation, λ=0  log, λ≠0 or 1  power transformation

 model: tλ(y) = Xβ + ε,   ε ∼N(0, σ2I)

 parameters: λ, β, σ
 can write down likelihood for estimation and testing of λ
 choice of transformation becomes a estimation/test problem

 the log-likelihood is

L(λ) = (−n/2) log(RSSλ /n)+(λ-1) Σ log(yi),

where RSSλ = residual sum of square when using tλ(y) as response, i.e.,

Transformation
• Recall:

 objective: for some data, data after transformation can better fit a linear model

 Q: how to choose an appropriate transformation?

 transformation can be applied on response and on predictors

goodness of fit adjustment

log(y),       if λ=0. 

(yλ-1)/λ, if λ≠0, 
tλ(y) = {
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