- categorical (qualitative) predictors $\xrightarrow{c f .}$ categorical response (GLM)
$>$ nominal vs. ordinal reg.educational attainment, disease diagnostic rating.
> examples: male/female, treatment/control, eye colors, blocks, ...
> qualitative in nature: - values are symbols, no quantitative meaning - no value exist between categories prelationship between
$>\mathrm{Q}$: what properties can we explore for qualitative predictor? $\boldsymbol{f} \& \boldsymbol{x}$ category $i \rightarrow y_{i j}, \mu_{i}=\mathrm{E}\left(y_{i j} \Rightarrow\right.$ can only study difference between μ_{i} 's (cf., quantitative predictor) many categories (1-way, 2-way...) \Rightarrow many "tyifferes"
> Q : how to fit these predictors into the format of linear regression model
$\boldsymbol{Y}=\underline{\boldsymbol{X} \boldsymbol{\beta}}+\boldsymbol{\varepsilon}$? Ans: dummy variables -base functions for qualitative predictors
\cdot one dichotomous predictor: two categories
$>$ for a dichotomous predictor C with two categories c_{l} and c_{2}, define a dummy variable $d:{ }_{c f} d(\underline{C})= \begin{cases}0, & \text { if } C=c_{\underline{l}}, \\ \underline{l}, & \text { if } C=\text { this is a known function of } C\end{cases}$
$>$ for a data set with response y, one quantitative predictor x, and one qualitative predictor \underline{C} (dummy variable d), possible models are: $\quad \frac{1}{2} \longrightarrow \frac{3}{3} \geq 5$, " \rightarrow " nested

y model 1 p. 8.12
- model 1: $y=\beta_{0}+\underline{\beta}_{1}+\epsilon$ what difference?
reference
$\begin{array}{ll}\underline{C=c_{1}}: & \underline{\mu_{1}}=E(y \mid \underline{d=0})=\underline{\beta_{0}} \\ \underline{C=c_{2}}: & \underline{\mu_{2}}=E(y \mid \underline{d=1})=\underline{\beta_{0}}+\beta_{1}\end{array} \Rightarrow \begin{aligned} & \underline{\beta_{0}}=\underline{\beta_{1}}=\underline{\mu_{2}}-\mu_{1}\end{aligned}$
- model 2: $y=\beta_{0}+\beta_{1} \underline{x}+\epsilon$ what difference?

$\Rightarrow \quad \underline{\beta_{2}} \quad \underline{\text { slope }}$ of category $\underline{c_{1}}$ $\underline{\beta_{1}}=\underline{\text { difference in intercepts }}$ $\underline{\beta_{3}}=\underline{\text { difference in slopes }}$

$>$ alternative coding of dummy variable（better orthogonality） $\begin{aligned} & \begin{array}{l}\text { location \＆} \\ \text { scale } \\ \text { change }\end{array}\end{aligned}-2 \times\left[\begin{array}{l}0 \\ 1\end{array}\right]+\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}+1 \\ -1 \\ 1\end{array}\right] \rightarrow d(\underline{C})= \begin{cases}\frac{-1}{1,} & \text { if } \underline{C=c_{1}}, \\ \underline{1}, & \text { if } \underline{C=c_{2}},\end{cases}$

Q：how to interpret β_{i}＇in models $\overline{1 \sim 5}$ under this coding？ －model 1：$y=\beta_{0}+\beta_{1} d+\epsilon \quad \mathbb{Q}:$ how about models $2 \sim 5$ ？（exercise）difference？ | what |
| :--- |
| difference？ |
| $\underline{C=c_{1}}:$ |
| $\underline{C=c_{2}}: \quad \underline{\mu_{1}}=E(y \mid d=-1)$ |
| $\underline{\mu_{2}}=E(y \mid \underline{d=1})=\beta_{0}$ |

$>$ analysis strategy：start from the full model（model 5）if there are enough $=-\left(\mu_{1}-\Pi\right)$ degrees of freedom，and then test if some terms can be eliminated
$>$ identical methodology applies for more than 2 e．g． 2 guantitative predictors x_{1}, x_{2}

$>$ Q：what if data in the two categories have different variance？$\left.B_{n} x_{1}^{2}+\beta_{11}^{2} d x_{i}^{2}=\left(\beta_{11}+\beta_{10}^{i d}\right) x_{1}^{2}\right] \Rightarrow$
 ANCOVA（共羔數合析）
$\mathrm{HoUH}_{\Delta} \rightarrow \quad \mathrm{B}_{1}=\mathbf{O} \mathrm{H}_{0} \rightarrow(3)$ ANalysis of COVAriance：testing model $3(\Omega)$ against model 2 （ ω ）

$$
\frac{C=c_{1}}{}: \quad \frac{\mu_{1}}{1}=E(y \mid d=-1)=\beta_{0} / \sqrt{\beta_{1}} \Rightarrow \frac{\beta_{0}}{\beta_{1}}=\left(\mu_{1}+\mu_{2}\right) / \underline{2} \equiv \bar{\mu}
$$

 allowed）．The quantitative predictor is called covariate and is $y=\beta_{0}+\beta_{1} d+\varepsilon$ expected to have the same effect in all categories．The difference \ff． term btw
$x \& d$ between categories is assumed to be an additive effect． －one polytomous predictor：more than two categories for k categories，$k-1$ dummy variables are needed to depict the difference
 \＃of
parameters
$=k$ between categories（one parameter is used to represent constant term）$y-\hat{e}_{2} x$
various coding of dummy variables： 4 categories $\underline{c}_{1}, \underline{c}_{2}, \underline{c}_{3}, \underline{c}_{4}$ example $_{R-\text { samplemdel }}\left(\omega_{2} b-10\right)$

	Helmert coding		
	d_{1}	$\mathrm{~d}_{2}$	$\mathrm{~d}_{3}$
c_{1}	$\mathbf{- 1}$	$\mathbf{- 1}$	$\mathbf{- 1}$
c_{2}	$\mathbf{1}$	$\mathbf{- 1}$	$\mathbf{- 1}$
c_{3}	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{- 1}$
c_{4}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$

$>$ consider the model：$y=\beta_{0}+\beta_{1} \underline{d_{1}}+\underline{\beta}_{2} \underline{d_{2}}+\beta_{3} \underline{d_{3}}+\epsilon$ －properties of treatment coding：what difference？

$\underline{C=c_{1}}:$	$\underline{\mu_{1}}=E\left(y \mid \underline{d_{1}=0}, \underline{d_{2}=0}, \underline{d_{3}=0}\right)=\underline{\beta_{0}}$
$\underline{C=c_{2}}:$	$\underline{\mu_{2}}=E\left(y \mid \underline{d_{1}=1}, \underline{d_{2}=0}, \underline{d_{3}=0}\right)=\underline{\beta_{0}+\beta_{1}}$
$\underline{C=c_{3}}:$	$\underline{\mu_{3}}=E\left(y \mid d_{1}=0\right.$,
$\left.\underline{d_{2}=1}, \underline{d_{3}=0}\right)=\underline{\beta_{0}+\beta_{2}}$	$\underline{\mu_{4}}=E\left(y \mid \underline{d_{1}=0}, \underline{d_{2}=0}, \underline{d_{3}=1}\right)=\underline{\beta_{0}+\beta_{3}}$

－treats $\underline{c}_{\underline{l}}$ as a reference
－it is convenient if a＂standard＂categories exists
－\underline{d}_{1}, d_{2} ，and d_{3} are mutually orthogonal，but not orthogonal to constant term

$\leftrightarrow \quad$ properties of sum coding：$y=\beta_{0}+\beta_{1} d_{1}, \beta_{2} \underline{d}_{2}+\underline{\beta}_{3} d_{3}+\epsilon$
$\overline{C=c_{1}}: \quad \underline{\mu_{1}}=E\left(y \mid \underline{d_{1}=-1}, \underline{d_{2}=-1}, \underline{d_{3}=-1}\right)=\beta_{0}-\beta_{1}-\beta_{2}-\beta_{3}$
$\underline{C=c_{2}}: \quad \underline{\mu_{2}}=E\left(y \mid \underline{d_{1}=1}, \underline{d_{2}=0}, \underline{d_{3}=0}\right)=\underline{\beta_{0}+\beta_{1}}$
$\underline{C=c_{3}}: \quad \underline{\mu_{3}}=E\left(y \mid \underline{d_{1}=0}, \underline{d_{2}=1}, \underline{d_{3}=0}\right)=\underline{\beta_{0}+\beta_{2}}$
$\underline{C=c_{4}}: \quad \underline{\mu_{4}}=E\left(y \mid \underline{d_{1}=0}, \underline{d_{2}=0}, \underline{d_{3}=1}\right)=\underline{\beta_{0}+\beta_{3}}$
What difference？$\beta_{0}=\frac{\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4}}{4} \equiv \underline{\bar{\mu}}$
\mathbb{Q} ：Why no $\underline{\mu}_{1}-\bar{\mu}$ ？
$\beta_{1}+\beta_{2}+\beta_{3}=\mu_{2}+\mu_{3}+\mu_{4}-3 \bar{\mu}$
$=4 \bar{\mu}-\mu_{1}-3 \bar{\mu}=-\left(\mu_{1}-\pi\right)$
$\Rightarrow \mu_{1}-\bar{\mu}=-\left(\beta_{1}+\beta_{2}+\beta_{3}\right)$
$H_{0}: B_{1}=B_{2}=\beta_{3}=0$ $\left(\mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}=\bar{\mu}\right)$
－$\underline{\beta}_{0}$ represent overall mean
H_{A} ：at least one of $B_{i}{ }^{\prime}$ not 0 \square compare each category with the overall mean （at least one of μ is not $\bar{\mu}$ ）
－lesser orthogonal $H_{0}(\underline{\omega}): y=\beta_{0}+\varepsilon, H_{0} \cup H_{A}(\underline{\Omega}): y=\beta_{0}+\beta_{1} d_{1}+\beta_{2} d_{2}+\beta_{3} d_{3}+\varepsilon$ $\tau_{\text {check codings in }} \mathrm{L}_{\mathrm{p}} .14$
$>$ Note：the choice of coding does not affect the $\underline{R^{2}}, \underline{\hat{\sigma}}$ and overall F－test （to test $H_{0}: \beta_{I}=\beta_{2}=\beta_{3}=0$ ，the three codings have same ω and Ω ）
one qualitative predictor
the overall F－test is one－way ANOVA（ANalysis Of
ANOVA does not depend on the choice of di＇s Q：how to work with quantitative predictors？\Rightarrow identical methodology as in 2 categories case．Q：how to interpret parameters in the case？

- two qualitative predictors $\rightarrow A \& B$ can be crossing or nesting (say, $\underline{A}: \underline{I=3}$ categories $\underline{a}_{1}, a_{2}, a_{3} ; \underline{B}: \underline{J=4}$ categories, $\underline{b}_{1}, b_{2}, b_{3}, \underline{b}_{4}$)
number of different category combinations $=\underline{3 \times 4}=\underline{12}-$ \# of denote their means as $\mu_{i j}, i=1,2,3$ and $j=1,2,3,4$, i.e., total df $=\sum_{i . j} n_{i f}$

$\begin{aligned} & \text { but can only fit at } \\ & \text { most } \mathrm{IJ}=12 \mathrm{~B} \text { 's }\end{aligned} \rightarrow y_{i j k}=\underline{\mu_{i j}}+\epsilon_{i j k}, \quad k=1,2, \ldots, n_{i j}, ~$

$n_{i j}=$ number of observations in category $A=a_{i}$ and $B=b_{j}$

$\left.>\begin{array}{l}\text { Q: how to depict the difference between } \mu_{i j}, s ? \\ \text { consider the following linear models: }\end{array} \rightarrow \begin{array}{l}\text { called repummy } \\ \text { uariables } \\ \text { for } A \& B\end{array}\right]\left[\begin{array}{l}A \cdot d_{1}^{A}, d_{2}^{A} \\ B: d_{1}^{B}, d_{2}^{B}, d_{\underline{B}}^{B}\end{array}\right]$

- model 1: $E\left(y_{i j k}\right)=\beta_{0}$
- model 2: $E\left(y_{i j k}\right)=\beta_{0}+\beta_{1} \underline{d_{1}^{A}}+\beta_{2} \underline{d_{2}^{A}}$
- model 3: $E\left(y_{i j k}\right)=\beta_{0}+\beta_{1} \underline{d_{1}^{B}}+\beta_{2} \underline{d_{2}^{B}}+\beta_{3} \underline{d_{3}^{B}}$
- model 4: $E\left(y_{i j k}\right)=\beta_{0}+\beta_{1} \underline{d_{1}^{A}}+\beta_{2} \underline{d_{2}^{A}}+\beta_{3} \underline{d_{1}^{B}}+\beta_{4} \underline{d_{2}^{B}}+\beta_{5} \underline{d_{3}^{B}}$ (an additive model) model 1μ model $2 \quad-\quad$ model 3

Q: What difference do their B^{\prime} 's depict?
eg. $\mu_{11}-\mu_{21}=\mu_{12}-\mu_{22}=\mu_{13}-\mu_{23}=\mu_{14}-\mu_{24}$ $\mu_{13}-\mu_{14}=\mu_{23}-\mu_{24}=\mu_{33}-\mu_{34}$

$$
F=\frac{\left(R S S_{\omega}-R S S_{\Omega}\right) /\left(\underline{d f_{\omega}-d f_{\Omega}}\right)}{R S S_{\underline{\text { model } 5}} / d f_{\text {model } 5}} \sim F_{\underline{d f_{\omega}-d f_{\Omega}}, \underline{d f_{\text {model } 5}}}^{\underline{\hat{\sigma}_{\text {model } 5}^{2}}} \begin{aligned}
& \hat{\sigma}_{\text {pure error }}^{\mathbf{p . 8 - 1 9}}
\end{aligned}
$$

- invariant to the choice of dummy variables if they generate same ω and Ω
- ANOVA could have different results when the order of effect sequence is changed, e.g., anova $(y \sim 1+\underline{B}+\underline{A}+A: B):\left[\begin{array}{l}\text { Type III } \\ \text { invariant }\end{array} \begin{array}{c}\text { RSI }-R S S \Omega \text { from } \Omega_{\text {model } 5} \\ \text { RSSmodel } 5 \text { from } \Omega_{\text {model } 5}^{\perp}\end{array} \rightarrow\right.$ independent

2) $\stackrel{\text { cf }}{\leftrightarrows} \alpha)$ test $\underline{\omega}_{1}: \underline{\text { model } 1(y \sim \underline{1})}$ against $\Omega_{1}:$ model $3(y \sim \underline{1}+\underline{B})\left[d f_{\omega}-d f_{\Omega}=\underline{3}\right]$
 $\chi)$ test $\underline{\omega}_{3}: \underline{\text { model } 4}(y \sim \underline{1+B+A})$ against $\underline{\Omega}_{\underline{3}}: \underline{\text { model } 5}(y \sim \underline{1+B+A}+\underline{A: B})\left[d f_{\omega}-d f_{\Omega}=\underline{6}\right]$

- nova $(y \sim 1+\underline{A+B}+A: B)$ and anova $(y \sim 1+\underline{B+A}+A: B)$ will have

Also, Type I
8 Type III
are identical
4

(I-I)(J-1)(k-1) parameters

- identical methodology applies for more qualitative (3-factor interaction, 4-factor interaction, ...) and quantitative predictors (similar modeling to what in LNp.8-12~13)

- Recall \rightarrow check $L_{p} .7 .9_{2} 16$.transformations Transformation

$>$ objective: for some data, data after transformation can better fit a linear model
$>$ Q: how to choose an appropriate transformation? \rightarrow various plots \Leftarrow rather subjective
$>$ transformation can be applied on response and on predictors $\stackrel{\text { If }}{\rightarrow}$ numerical method - transformation of response $\begin{aligned} & \text { location } \& \text { scale } \\ & \text { changes of } y^{\lambda}\end{aligned} \sqrt{\boldsymbol{q}_{\left(y^{\lambda}-1\right) / \lambda}}$, if $\lambda \neq 0$, $\boldsymbol{\text { collect a lot of }}$
$>$ Box-Cox transformation family: $t_{\underline{\lambda}}(y)=\left\{\begin{array}{ll}\underline{(y)}(1), & \text { if } \underline{\lambda \neq}, \\ \underline{\log (y),} & \text { if } \lambda=0\end{array}\right] \circ \begin{aligned} & \text { transformations } \\ & \text { using a }\end{aligned}$ needed in likelihood approach 7 in λ : for fixed $y>0$,

- $t_{\lambda}(y)$ is continuous in $\underline{\lambda}$: for fixed $y>0$,
use data to determinealso, differentiable $\lim _{\lambda \rightarrow 0} t_{\lambda}(y)=\lim _{\lambda \rightarrow 0}\left(y^{\lambda}-1\right) / \lambda=\lim _{\lambda \rightarrow 0}\left(y^{\lambda} \log (y)\right) / 1=\log (y) \quad \frac{d y_{\lambda}}{d y}=y^{\lambda-1}$ - $\lambda=1 \Rightarrow$ no transformation, $\lambda=0 \Rightarrow \underline{\log , \lambda \neq 0 \text { or } 1 \Rightarrow \text { power transformation }}$ - model: $\quad Y_{\lambda} \equiv t_{\lambda}(y)=\underline{X} \underline{\beta}+\underline{\varepsilon}, \underline{\varepsilon} \sim \mathrm{N}\left(\underline{\theta}, \underline{\left.\sigma^{2} I\right)} \Rightarrow Y_{\lambda}=\underline{t}_{\lambda}(Y) \sim N\left(X, \underline{\beta}, \sigma^{2} I\right)\right.$, - parameters: $\underline{\lambda}, \underline{\beta}, \underline{\sigma}$ likelihood: $\mathcal{L}(\lambda, \beta, \sigma ; \underline{Y})=\mathcal{L}(\lambda, \beta, \sigma ; \underline{Y}) \cdot|\underline{J}|$ numerical profile log-
likelihood - can write down likelihood for estimation and testing of $\underline{\lambda}$ - choice of transformation becomes a estimation/test problem

$$
R S S_{\lambda}=\left[t_{\lambda}(y)\right]^{T}(I-H) t_{\lambda}(y)=\underline{\underline{Y}_{1}^{\top}}(I-H) \underline{Y_{\lambda}}
$$

