

made by S.-W. Cheng (NTHU, Taiwan)

$ \blacklozenge befine \ \underline{z_0} = \underline{l}, \ \underline{z_1} = \underline{a_1} + \underline{b_1} \underline{x_1}, \ \underline{z_{11}} = \underline{a_2} + \underline{b_2} \underline{x_1} + \underline{c_2} \underline{x_1}^2, \ \underline{z_{111}} = \underline{a_3} + \underline{b_3} \underline{x_1} + \underline{c_3} \underline{x_1}^2 + \underline{d_3} \underline{x_1}^3, \dots $
Find $\underline{a_i, b_i, c_i, \dots}$, that make $\underline{z_j^T z_k = 0}$ if $j \neq k$ (and $ \underline{z_j} = 1$ sometimes) • $\chi = \hat{\beta}_0 z_0 + \hat{\epsilon}_1$
$\begin{aligned} & \qquad \qquad$
Schnidt regress x on z then the residuals is proportional to z : regress polynomial of χ_1
process $\frac{1}{2} = \frac{1}{2} = \frac{1}{2$
$\frac{1}{1} \frac{1}{1} \frac{1}$
$ \frac{1}{1} = \frac{1}{1} \frac$
$\Rightarrow \vec{E}_2 = \vec{X}_1 - \vec{r}_0 \vec{Z}_0 - \vec{r}_1 \vec{Z}_1 \cdot \vec{r}_0 \vec{Z}_0 - \vec{r}_1 \vec{Z}_1 \vec{Z}_1 \vec{Z}_1 - \vec{r}_1 \vec{Z}_1 \vec{Z}_1 - \vec{r}_1 \vec{Z}_1 \vec{Z}_1 - \vec{r}_1 \vec{Z}_1 \vec{Z}_1 - \vec{r}_1 - \vec{r}_1 \vec{Z}_1 - \vec{r}_1 - r$
x_1x_2 on z_0 , z_1 , z_2 , and the residuals are proportional to z_{12}) polynomial of χ_1
$\rightarrow \text{ change model based on polynomial terms to model based on z's, e.g.,} \Rightarrow \hat{\xi}_2 \perp z_0$
In DOE , often $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2 + \epsilon$
use $\underline{Z's}$, rather $\longrightarrow y = \beta'_0 + \beta'_1 z_1 + \beta'_2 z_2 + \overline{\beta'_{11}} z_{11} + \overline{\beta'_{22}} z_{22} + \overline{\beta'_{12}} z_{12} + \epsilon$
$\underbrace{\text{than } \underline{X's}}_{\text{factor } X} \rightarrow factor X \cdot (A.B,C) \rightarrow (-1,0,1), (A.B,C) \rightarrow (1,-2,1)$
the two models have same column space Ω (i.e., same R^2 , σ , overall F), but \mathcal{E} , we have the two models have same column space Ω (i.e., same R^2 , σ , overall F), but \mathcal{E} , we have the two models have same and \mathcal{R} and \mathcal{R} (i.e., same R^2 , σ , overall F).
$\frac{\text{interpretation of } \underline{p \text{ s}} \text{ and } \underline{p^{\prime} \text{ s}} \text{ are different (i.e., different estimates, i-tests)}$
\rightarrow <u>orthogonality can save works</u> when <u>selecting model</u> (do not have to <u>refit</u> after
deleting term), it's more convenient for fitting and testing Why? : orthogonality
• properties of polynomial model e.g. culture of (2Np. 5-7)
Volier more nexible relationship
believe it exactly represents the underlying reality
(response surface methodology)
 polynomials have the advantage of smoothness polynomial: polynomials have the advantage of smoothness polynomial: infinitely differentiable & if initely differentiable & if it is polynomial curves may become wiggly. if initely differentiable & if it is hard to fit is polynomial curves and response. if initely differentiable & if is hard to fit is polynomial curves and response. if initely differentiable & if is hard to fit is polynomial curves and response.
 polynomials have the advantage of smoothness polynomial: p. 8-6 polynomials have the disadvantage that each data point affects the fit globally For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. Polynomial shape of the relationship between predictors and response. polynomial model is hard to fit "jump function" "local" change Reading: Faraway(2005, 1st ed.), 7.2.2
 polynomials have the advantage of smoothness polynomial: polynomials have the disadvantage that each data point affects the fit globally For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of the relationship between predictors and response. polynomial model is hard to fit "jump function" "local" change down of the relationship between predictors and response. Reading: Faraway(2005, 1st ed.), 7.2.2 * Further reading: D&S, 12.1, 12.3, 22.2
 polynomials have the advantage of smoothness polynomial: polynomials have the advantage of smoothness polynomial: polynomials have the disadvantage that each data point affects the fit globally For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. polynomial shape of the relationship between predictors and response. polynomial model is hard to fit "jump function" "local" change down over the stick (line) regression (segmented regression) Recall. polynomial regression: suitable for smooth mean
 polynomials have the advantage of smoothness polynomial: polynomials have the advantage of smoothness polynomial: p. 86 p. 86
 polynomials have the advantage of smoothness polynomial: infinitely differentiable & ata point affects the fit globally For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of the relationship between predictors and response. polynomial model is hard to fit "jump function" "lacal" change polynomial model is hard to fit "jump function" "lacal" change k Reading: Faraway(2005, 1st ed.), 7.2.2 * Further reading: D&S, 12.1, 12.3, 22.2 broken stick (line) regression (segmented regression) Recall. polynomial regression: suitable for smooth mean structure, but cannot capture local abrupt change (example?) w to relax the smoothness restriction?
 polynomials have the advantage of smoothness polynomial: infinitely differentiable & 3 k st. dx E(4)=0, t = k solutions of d/dx E(4)=0 For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. Polynomial model is hard to fit "jump function" "local" change polynomial model is hard to fit "jump function" "local" change polynomial model is hard to fit "jump function" "local" change polynomial model is hard to fit "jump function" "local" change polynomial model is hard to fit "jump function" "local" change polynomial model is hard to fit "jump function" "local" change polynomial model is hard to fit "jump function" "local" change polynomial regression: suitable for smooth mean structure, but cannot capture local abrupt change (example?) how to relax the smoothness restriction? pone solution: broken line regression.
 polynomials have the <u>advantage</u> of <u>smoothness</u> <u>polynomial</u>: infinitely differentiable & <i>k</i> s.t. <u>dx</u> E(<i>y</i>)=0, <u>t</u> = <i>k</i> data point affects the fit globally <i>but</i>, have the <u>disadvantage</u> that each data point affects the fit globally <i>but</i>, have the <u>disadvantage</u> that each data point affects the fit globally <i>but</i>, have the <u>disadvantage</u> that each <i>data</i> point affects the fit globally <i>but</i>, have the <u>disadvantage</u> that each <i>data</i> point affects the fit globally <i>but</i>, have the <u>disadvantage</u> that each <i>data</i> point affects the fit globally <i>but</i>, have the <u>disadvantage</u> that each <i>data</i> point affects the fit globally <i>but</i>, have the <u>disadvantage</u> that each <i>data</i> point affects the fit globally <i>but</i>, have the <u>chock</u> <i>differentiable</i> <i>data</i> point affects the fit globally <i>but</i>, <i>b</i>-6 <i>coverfitting</i> <i>(LNp,6-6)</i> <i>polynomial</i> model is hard to fit "jump function" <i>local change</i> <i>differetiable</i> <i>coverfitting</i> <i>(LNp,6-6)</i> <i>polynomial</i> model is hard to fit "jump function" <i>local change</i> <i>differetiable</i> <i>coverfitting</i> <i>(LNp,6-6)</i> <i>polynomial</i> model is hard to fit "jump function" <i>local change</i> <i>differetiable</i> <i>coverfitting</i> <i>(LNp,6-6)</i> <i>polynomial</i> regression: suitable for <u>smooth</u> mean structure, but <u>cannot</u> capture local abrupt change (example?) <i>poltern</i> 1 <i>poltern</i> 2 <i>polynomial coverfitting</i> <i>polynomial coverfitting</i> <i>polynomial coverfitting</i> <i>polynomial coverfitting</i> <i>polynomial coverfitting</i> <i>polynomial coverfitting</i> <i>polynomial coverfitting</i> <i>polynomial coverfitting</i> <i>polynomial coverfitting</i> <i>polynomial coverfitting</i> <i>coverfitting</i> <i>differetiable</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfitting</i> <i>coverfit</i>
 polynomials have the advantage of smoothness polynomial: infinitely differentiable & data point affects the fit globally for larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. Polynomial shape of the relationship between predictors and response. polynomial model is hard to fit "jump function" "lacal" change of the relationship between predictors and response. polynomial model is hard to fit "jump function" "lacal" change of the relationship between predictors and response. polynomial model is hard to fit "jump function" "lacal" change of the relationship between predictors and response. polynomial regression: suitable for smooth mean structure, but cannot capture local abrupt change (example?) Q: how to relax the smoothness restriction? and solution: broken line regression. Q: when to use broken line regression? believe that different regression models apply in different regions out of the point c
 polynomials have the advantage of smoothness - polynomial: infinitely differentiable & data point affects the fit globally For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of the relationship between predictors and response. polynomial model is hard to fit "jump function" "local" change (Who6-6) polynomial model is hard to fit "jump function" "local" change (Who6-6) polynomial model is hard to fit "jump function" "local" change (Who6-6) polynomial regression: suitable for smooth mean structure, but cannot capture local abrupt change (example?) how to relax the smoothness restriction? one solution: broken line regression. when to use broken line regression? believe that different regression models apply in different regions - but not differentiable - smoothness relaxed
 polynomials have the advantage of smoothness polynomial: infinitely differentiable & data point affects the fit globally For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. For larger values of d, the fitted polynomial curves may become wiggly. Polynomial shape of the relationship between predictors and response. polynomial model is hard to fit "jump function" "lacal" change polynomial model is hard to fit "jump function" "lacal" change polynomial model is hard to fit "jump function" "lacal" change Potken stick (line) regression (segmented regression) Recall. polynomial regression: suitable for smooth mean structure, but cannot capture local abrupt change (example?) when to use broken line regression? believe that different regression? believe that different regression models apply in different regions but not of data, and the fit should be continuous at the broken points selected. suppose the break occurs at the known value c, define the base function (where c is
> polynomials have the advantage of smoothness $Polynomial:$ infinitely differentiable & data point affects the fit globally but, have the disadvantage that each q data point affects the fit globally For larger values of d , the fitted polynomial curves may become wiggly. For larger values of d , the fitted polynomial curves may become wiggly. broken stick curve may capture the random variation, rather than the curve may capture the random variation, rather than the core fritting (LMp6-6) polynomial model is hard to fit "jump function" "local" change q polynomial model is hard to fit "jump function" "local" change q polynomial regression: suitable for smooth mean structure, but cannot capture local abrupt change (example?) Q: how to relax the smoothness restriction? \Rightarrow one solution: broken line regression. Q: when to use broken line regression? \Rightarrow believe that different regression models apply in different regions but not of data, and the fit should be continuous at the broken points q somothness relaxed suppose the break occurs at the known value c , define the base function (where c is called a knot): $d_c(x) = \begin{cases} 1, \text{ if } x > c, \qquad \text{function 1} \\ 0, \text{ if } x \le c. \end{cases}$

made by S.-W. Cheng (NTHU, Taiwan)

Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)