
p. 8-1

Mean structure

• idea: data are generated from an underlying system, which is assumed to have 

the form:

• regression approximates the mean structure f by a linear combination of 

(known) base functions gi(x1,…, xm)’s, i=1, …, p, i.e.,

when the structure of f is simple and almost linear, it can be approximated 

by a simple structure with fewer terms, e.g.,

 Q: nature is simple?

 Q: are there sufficient data to support/fit a complex model?

when f is complex and non-linear  need more terms

to get a good approximation

 more parameters, need more degrees of freedom, i.e., more data

 e.g., 2 levels, only linear effects; 3 levels, linear and quadratic effects 

 Q: what other complex models?

• base functions for quantitative and qualitative predictors xi’s are defined in 

different ways

y = f(x1, …, xm) + ε, where f is unknown.

p. 8-2

• xi → (xi+a)/b or y → (y+a)/b, where a and b are given constants. 

a: change of location, b: change of scale

• Q: why we might want to do this?

 predictors of similar magnitude are easier to compare

 rescaling may make easier to read and may aid interpretability

 numerical stability is enhanced when all predictors are on a similar scale

 for experimental data, it’s often that we code two levels (say, 20°C, 30°C) →
(−1, 1); three levels (say, 20°C, 30°C, 40°C) → (−1, 0, 1)

• influence caused by location/scale change on xi (i.e., xi → (xi+a)/b)

 (under a model with intercept) overall F-test, t-test, R2, all unchanged

 change: → , →
• influence caused by location/scale change on y (i.e., y → (y+a)/b)

 (under a model with intercept) overall F-test, t-test, R2 unchanged

 and change: → , → for each i, →

σ̂

β̂

β̂

location and/or scale change

 Reading: Faraway (2005, 1st ed.), 5.2  Further reading: D&S, 16.2, 16.3

β̂ σ̂
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p. 8-3

Polynomial regression

• Q: when to use polynomial regression?  the relationship between 

response and quantitative predictors is smooth, but not a straight line. 

β
1

ˆβ
2

ˆ
 x and x2 could be highly correlated

 location shift: x→x+c  unchanged, but may 

become significant

 recommendation: do not remove insignificant lower-order

terms from model when the highest-order term is significant

• idea supports the approach  any smooth function (mean structure of the 

underlying system) can be approximated by a polynomial of high enough degree

• one predictor case:

 choice of d

 start with y=β0+β1x, keep adding polynomial terms until 

last term added is not significant.  danger: stop too soon

 start with a large d and recursively remove insignificant largest term

 use added variable plot/partial residual plot to gain information about d

 Q: Consider the model y=β0+β1x+β2x
2. what if β1 not significant, but β2 is 

significant? should x be removed from the model?

y = β0 + β1 x + β2 x2 + ... + βd xd + ε

p. 8-4

• two predictors x1, x2 case:

y = β0 + β1 x1 + β2 x2 + β11 x1
2 + β22 x2

2 + β12 x1x2 + ε     (d=2, 2nd-order model)
 the cross-product term x1x2 can be interpreted as an "interaction" effect, e.g.,

 models for more predictors can be similarly extended

 increasing degree d  model may have too many parameters

• orthogonal polynomials

 polynomial terms can cause numerical instability (especially when d large) and 

collinearity

 example: 2nd-order model

= β0 + β1 + β2

= β0 + β1 + β2

# of 
xi’s

d=2 d=3

2 6 10

3 10 20

4 15 35
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p. 8-5
 define z0=1, z1=a1+b1x1, z11=a2+b2x1+c2x1

2, z111=a3+b3x1+c3x1
2+d3x1

3, ...

Find ai, bi, ci, ..., that make zj
Tzk=0 if j≠k (and ||zi||=1 sometimes) 

0εy
T =ˆˆ

 change model based on polynomial terms to model based on z’s, e.g.,

the two models have same column space Ω (i.e., same R2, , overall F ), but 

interpretation of β’s and β’ ’s are different (i.e., different estimates, t-tests)

 orthogonality can save works when selecting model (do not have to refit after 

deleting term), it's more convenient for fitting and testing

• properties of polynomial model

 offer more flexible relationship

 remember that it's an approximation, we usually do not

believe it exactly represents the underlying reality

 can apply regression to obtain z0 , z1, z11,... (note: ), e.g., 

regress x1 on z0 , then the residuals is proportional to z1 ; regress

x1
2 on z0 , z1 and the residuals is proportional to z11. In R,  built-

in function is provided to construct orthogonal polynomials.

 cross-product terms (i.e., interactions) can be defined in a 

similar manner (e.g., z12= a+b x1+c x2+d x1x2 , regress

x1x2 on z0 , z1, z2, and the residuals are proportional to z12)

p. 8-6

 polynomials have the advantage of smoothness

 but, have the disadvantage that each 

data point affects the fit globally

 For larger values of d, the fitted polynomial curves may become wiggly. 

reason: the curve may capture the random variation, rather than the 

overall shape of the relationship between predictors and response.

 polynomial model is hard to fit "jump function"

 Reading: Faraway(2005, 1st ed.), 7.2.2  Further reading: D&S, 12.1, 12.3, 22.2

• Recall. polynomial regression: suitable for smooth mean 
structure, but cannot capture local abrupt change (example?) 

Q: how to relax the smoothness restriction? 

 one solution: broken line regression.

• Q: when to use broken line regression? 

broken stick (line) regression (segmented regression)

• suppose the break occurs at the known value c, define the base function (where c is 

called a knot): 

 believe that different regression models apply in different regions

of data, and the fit should be continuous at the broken points

0,    if x ≤ c.

1, if x > c, 
dc(x) = {
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p. 8-7

• generalization: more knot points or more predictors  define more base functions

• broken curve regression: y = β0+β1 x+β2 x
2+β3 (x- c)dc(x)+β4 (x- c)2dc(x)+ε

= β0 + β1 + β2 + ε

 the two lines meet at c  continuous fit

 notice only 3 parameters in the model  one degree of 
freedom is saved because of the continuity restriction

 Reading: Faraway (2005, 1st ed.), 7.2.1  Further reading: D&S, 14.3

regression spline and LOWESS

(β0 - β2 c)+ (β1 + β2 ) x,    if x > c,

β0 + β1x, if x ≤ c, 
E(y) = {

• model: y = β0 + β1 x + β2 (x- c)dc(x) + ε

• when c is unknown

 can regard c as a parameter  not a linear model any more 

 can be estimated by nonlinear regression

p. 8-8

• regression spline

 concept: define different base functions to fit data

 power function: smoothness, but non-zero across the whole range

 broken line: lesser smooth, but localizing the influence of data point

 B-spline: compromise between smoothness and local influence

 cubic B-spline base functions: g1,..., gk- 4 defined on an interval [a, b] with 

knot-points t1 ≤ ... ≤ tk (no need to be equally spaced) satisfying:

• concept: fitting using local points ⇔ better fit

using global points ⇔ smoothness

Q: which should you choose for your data? 

using local points or global points?

1. non-zero on interval defined by 5 successive 

knots and zero elsewhere  local influence

2. a cubic polynomial for each sub-interval between 

successive knots

3. continuous, and continuous in its 1st and 2nd

derivatives at each knot  smoothness

4. integrate to one over its support
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p. 8-9

knot points: 0, 0, 0, 0, 0.2, 0.4, 0.5, 0.6, 0.7, 

0.8, 0.85, 0.9, 1, 1, 1, 1

• LOWESS (LOcally WEighted 

Scatterplot Smoothing) 

Recall: in previous models, 

# of parameters are finite

nonparametric regressions:

model: y = f(x1, …, xm) + ε

Q: why the knots are dense in some region?

 base function at the ends of the interval are 

defined differently to ensure continuity

 regress y on these B-spline base functions, 

i.e.,

y = Σi βi gi(x) + ε
(Note: gi’s are known functions for given t’s 

 it’s still a linear model)

 nonparametric regression: assume f is smooth only (# of parameters = ∞)

 parametric regression: assume f is from a family 

of functions, in which # of parameters is finite

p. 8-10

 method: (see example)

1. select a window ( local information), and a weighting 

function ( closer points, more contribution)

2. use weighted (closer points, higher weights) average of 

yi's in the window to estimate fitted value

3. repeat as the window moves

 Reading: Faraway (2005, 1st ed.), 7.2.3; Faraway (2006), chapter 11 

 width of window is an issue

(larger window, smoother curve)

 can plot fitted value for a variety

of widths and pick best result

 different width of window to 

estimate f along the range of x

 LOESS: change step 2 to locally weighted (1st or 2nd order) 

polynomial regression (see example)

 difficult if extrapolation is required (same difficulty in 

regression spline)

 nonparametric regressions are useful for fitting a curve for 

residual plots, added variable plots, partial residual plots

 sensitive to outliers: use median, not average

NTHU STAT 5410, 2022  Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)


