NTHU STAT 5410, 2022 Lecture Notes

p- 8-1

model : Y=§'§=+_E;J—o Mean structure true model

» idea: data are generated from an underlying system, which 1s assumed to have
the form: ¥ = flx,, I e Xy ) + & where f is unknown.<—use dota +o 4ain information

* regression approximates the mean structure / by a linear combination of

(known) base functions gz-(x], ey X,)’S, =1, ..., p, 1€, especially on
“local” regio

f o 0 B gilen ) o

the to
dota determine o unknoiin —= . . predictors .
» when the structure of f'is simple and almost linear, it can be approximated

by a simple structure with fewer terms, e.g.,

cme? Eﬁ'ﬁ&? Ey)=f=p+bfizi+ +PmTm
tag 5 Q: nature is simple?-> lack of fit problem .,[C"Mgrsogés (transformation)

fth2«@) Q: are there sufficient data to support/fit a complex model‘7

» when fis complex and non-linear = need more terms 4 Iﬁ

s to get a good approx1mat10‘_Jon a wider region of the predictors]
vES| = more parameters, need more degrees of freedom 1.e., more data data

‘?&ES » .g., 2 levels, only linear effects; 3 levels, linear and quadratic effects

—@® Q: what other complex models?-™ ‘g‘,,‘f,ﬁ}}d”:;ecf;{;‘fjgﬁ"é | of distinct Xi's

* base functions for quantitative and qualitative predictors x,’s are defined in
different ways

p. 8-2

eq X - X-XJ location and/or scale change 1} g(c-o
. 500 /300 X,

* X, - (x,a)bory - (y+a)/b, where a and b are given constants.

a: change of location, b: change of scale | @ Canwe COMPMH! M&Mﬁ. 47 (32)
. . of Bis to & 2
Q: why we might want to do this? Ans. In flmn; l"@_gﬂié \

=)'!D> .

» predictors of similar magnitude are easier to compare Bc's < ridge regression
#0r Change of units A *LASSO
(xy > r rescaling may make f easier to read and may aid interpretability

C 3

l » numerical stability is enhanced when all predictors are on a similar scale
XxL. Soocm Foocm
» for experimental data, it’s often that we code two levels (say, 20°C, 30°C) -

(=1, 1); three levels (say, 20°C, 30°C, 40°C) - (-1, 0, 1)—)"2'“012“&&5—_'1
« influence caused by locatlon/scale change on x; (i.e.,x; - (x; +a)/3) é‘l*%ﬂ

7same ML~ - same W A
» (under a model with 1ntercept) overall F-test, t-test, R?, ¢ all unchanged
E(4)= Bot_-* Bi i = (Bo-Bia) +-.. + (681 (238) =B+ +BiXl 4. B __bhie
> B change:@ — %‘Z_,JB«. @ — By — aﬂz‘Bo se(B)” (68

[r——— =y'
* influence caused by location/scale change ony (i.e.,y —» (y1ta)b) - Ly, % 1 O \Tss
RsS

B/

» (under a model with intercept) overall F-test, ¢-test, R’ unchanged
ﬂ-—-Bo'l'I Biix)+E£> ¢ = '&" %*:( wi(l)"; BO"‘ zBL&(")"E & Var(€)
> g and g change: & — a/b 52 o ﬁl/b for each i, 50 — (50 +a)/b = ZTar(€)
% Reading: Faraway (2005, 1% ed.), 5.2 J ar(E;; B;] % Further reading: D&S, 16. 2.11-6—3“po
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t p. 8-3
f:ls;nf‘muﬁﬁ;;é_r’mlynomial regression [“"’“'”’" true § o Ferentiable

* Q: when to use polynomial regression? = the relationship between :f'f‘m;w_ nts

response Ea(gd)quantitative predictors is smooth, but not a straight line} .- groken lines

, X Xy, -, %m S —
* idea supports the approach = any smooth function (mean structure of the

underlying system) can be approximated by a polynomial of high enough degreep

. locally
* one predictor case: y=B+Bx+Bxl+t.. +Bxlte 73),[0,,3

» choice of d [ base?;mcfions l expansion
= start with y=/4,+f,x, keep adding polynomial terms until 4 f» .
last term added is not significant. = danger: stop too soon L *=2 oy

» start with a large d and recursively remove insignificant largest term

«interpretation| m  USe added variable plot/partial residual plot to gain information about d

x v
Q: Consider the model y=4,+B,x+fx’. what if 3, not significant, but £, is
significant? should x be removed from the model? (g(g)=go+g,22|[\s22 q

- has maximum
» x and x? could be highly correlated ot A nimem
= location shift: x - x+c = f,unchanged, but £, may

e

become significant E(Y)=Bo+ é.

X~

=0 N , 0
X+ B2x’= Qo+ 8 (x+C)+ B1(x+C)* +do not want our

» recommendation: do not remove insignificant lower-order m‘i‘_;)esec":;ﬁ"“
terms from model when the highest-order term is significant t; > X+ ?e:>

€ two predictors z, @, case: ~Ist -order model (d=1)

) !730 + 5 X, B, 3£gl+ B )_cf + 5, ;_ch + 5, XX, + € (d=2, 2"-order model)

> the cross-product term x,x, can be interpreted as an "interaction" effect, e.g.,
o L.
E(y) = Bo+ frz1+ P2 xa + B3 x1x2, where 1,19 € {—1,1} RB(EA

p. 8-4

21 =+1= E(y) = (Bo+ 1) + (B2 + B3) %3 difSerence # of parameters
v1=-1= E(y) = (Bo— B1) + (B2 — B3) z2 05 slopes=2B3 | = l+m+m+(7)
» models for more predictors can be similarly extended = (mikm#2) /2

— m m 2 J #of | d=2 | d=3
y =0+ 2201 B it D2t P2 B+ XicicyemP3,i Tity e | R

®— 1st-order model 2 6 10
» increasing degree d = model may have too many parameters—${ 3 10 | 20
« orthogonal polynomials c‘.‘ collinearity > [X'X|=0 > (X'X) unstable |4 | 15 | 35
» polynomial terms can cause numerical instability (especially when d large) and
collinearity each for ~- & change
> example: 2™-order model |different base ﬁfw wns\ fc{:m‘
patterns | 4 X xa =20
47 .
4 ° =By 4 B | oM ——
'l:;:: :F-\! appn’)ximaée 0—+¢ 4 X 06— o; X
& locally using 1 asbx q+bxecxd e—
anudff @ 2ad-order -
polynomial aﬁﬁu? x| =5, + B, H=="allI B, | J/
£ —) > 1 XXLVAIY '(' 2 X-‘ +
e RLTIPP R ot MNP I
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€% define zp=1, z;=a;+bx;, z;=a,thyx,tex 2,z =asthyx e A rdix A, o P

Find a, b, ¢, ..., that make z,'z,=0 if ];tk (and ]J_ sometimes) o %=Bzo+ &
chan, 9e s K > € =X-fo2o:
Gmm;ﬂ: = can apply regression to obtainz,, z,, z ZH, (note: =0 "V £=0),€e.g., alst-order

pralucgss egres X, on z,, then the residuals is proportional to z, ; regress - gyf"z":' %
ave  XFonzp,z, and the residuals is proportional to z,,. In R, built- > ’e". =<2,
in function is provided to construct orthogonal polynomials. ~5—5—=—=
| . : ; 3 X =ZthZi*E;
I cross-product terms (i.e., interactions) can be defined in a > B b-f 2
2=A~loLo" N &s °
Zz2e  similar manner (e.g., z;,= atbx;tcx,tdxx, , regress Q 20d-arder
I XX, 0Nz, z;, z,, and the residuals are proportional to z,,) pdynomaal of Xi
> change model based on polynomial terms to model based on z’s, e.g., 7 ?i ?
Ea '

InDOE, often] ¥ = fo + B1 21 + Pozo + fr1 2] + Pa2 2 + fraziza +€ o Ea¢ Zy
use 2's.,rathery —— Y = 50 + 51 21 + 52 22 ~+ Bll 211 =+ 622 222 = 512 <12 + S interested in

than X's Fackor X . (A.B,C)> (-1,0, 1, (ABC)-»(I =2.1) ’
the two models have same column’ space Q (i.e., same R?, ¢, overall F'), bu 8 inot
interpretation of S's and [ s are different (i.e., dlfferent estimates, z-tests)
» orthogonality can save works when selecting model (do not have to refit after
deleting term), it's more convenient for fitting and testing Lwt.,ﬂ or*bhogonalrl:y
* properties of polynomial model  eg. curvature & (LNp.5-9)
» offer more flexible relationshiptvl. interaction effects .
» remember that it's an approximatiorf we usually do not «Z?;y tr,::z‘;n :;:n.!

believe it exactly represents the underlying reality (response surface methodology)
: _r® polynomial : P- &
I » polynomials héve the advantage of smoothness infinitely d M' able &
~=() but, have the disadvantage that each ¢ § |3k st £Ew'° t=
data point affects the fit globally X |solubions of YaxE($)= j

| reason: the curve may capture the random Varlatlon rather than the |check
overall shape of the relationship between predlctors and response. mﬁfﬁ;@

o polynomial model is hard to fit "jump function" locol” change _ 4 Lj m@;
4

% Reading: Faraway(2005, 1%t ed.), 7.2.2 < Further reading: D&S, 12.1, 12.3,22.2
broken stick (line) regression (segmented regression)

ﬁF or larger values of d, the fitted polynomlal cutves may become wiggly.
LNp.6-b6
Lob

* Recall. polynomial regression: suitable for smooth mean
structure, but cannot capture local abrupt change (example?)

Q: how to relax the smoothness restriction? pattern 1 D
!
—> one solution: broken line regression. ';”' °b°“!-°r t! . [ d:ﬁ'efzimblee
* Q: when to use broken line regression? polyronial 3 | G ot HhepointC

= believe that different regression models apply in different regions - but not
of data, and the fit should be continuous at the broken points > smoothness reloxed
* suppose the break occurs at the known value ¢, define the base function (where c 1s

called a knot): - known, d riable
Knot 1, ifx>ec, : ) ummy varia
d.(x) { . Jrtn 2 . S
if x <c. ° ] cai‘egor/zmg ej 2
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€. mobel: y=08+Bx+Bx-c)d Q+ = - known function -> still  linear model  ©*7

B:Why can the base
intercept and funckion (X-€)dc(X)
Slope of the | = 5o +5; N e |+ 5 ﬁJ + & | reduce “global”
line on. region —L (R4(°) E— influence of data

XsC =, L, [difSerence of jmrmﬁva C;ﬂS Ter ks on the §it ?
EW) = Byt Bk, Jthe2sipes=Ba| if x <, influence on | [What is the conbribution
By- Bc)+ (B + :82] x, if x>g §=(X1X)1XTY of ﬂ%j:fg et
> the two lines meet at ¢ = continuous fit —s{0ng N
» notice only 3 parameters in the model = one degree of o
hafreedoné is saved because of the continuity restriction -
(4 nge point problem Sy
when ¢ is unknown (4 2o’ |* Elf1= Bo*Bidla) B X+ B3 (1-0defa) [
= canregard c as a parameter = not a linear model any more
= can be estimated by nonlinear regression

* generalization: more knot points or more predictors = define more base functions

/\/\ / > 44 —o—a-‘é _wa

G C2C3 € C2Cs € GC € GC o
» broken curve regression: y = [+, x+5,x°+[; (x- c)d (x)+ B, (x- ¢)’d (x)+&
+ Reading: Faraway (2005, 1ted.), 7.2.1 % Further reading: D&S, 14.3

regression spline and LOWESS

B
“. concept: fitting using local points < better fit Y
| nodk \
develop & f ocloser  x « z | ’
ot any X using global pomts = smoothness { Whore
Q: which should you choose for your data? m‘i_
using local points or global points? (3,4 erder mdel : locate?
* regression spline E(4):B BiXsfar’ e

» concept: define different base functions to fit data

» power function: smoothness, but non-zero across the whole range

. e use gobul pornés
9 broken line: lesser smooth, but localizing the influence of data poin

» B-spline: compromise between smoothness and local influence

> cubic B-spline base functlons 95> gr- 4 defined on an interval [a, b] with

knot—pomt t, < t, (no need to be equally spaced) satisfying:
1. non-zero on interval defined by 5 successive %:?;fd dn.%emd:.
knots and zero elsewhere = local influence | derivatives ;‘.f,y:;ws
2. a cubic polynomial for each sub-interval between
successive knots \— rnﬁ‘niéeﬂg differentiable 2 8 x
3. continuous, and continuous in its 15t and 2 l
— - — — tr - &) tin tisa sz tivg oo«
derivatives at each knot = smoothness ;e Lj it ?nk
. . a .
4. integrate to one over its support 5 successive knots 6 N
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. . p- 89
> base function at the ends of the interval are

defined differently to ensure continuity

» regress y on these B-spline base functions,
1.€.,

- knots are 2
B |2 2 Bo@ e lenown |
(Note: g;’s are known functions for given t’£
= it’s still a linear model) 3 D055/ ¢

non-parametric approach in statistic : dim(parameters)=00 15t points: 00, 0,0, 02 04, 05, 0.6, 0.7
non-parametric __rdistribu-l:ion of & e—] 0808509 11,11
D

000

regression mean Structure E($x) «—— Q: why the knots are dense in some region?
* LOWESS (LOcally WEighted
Scatterplot Smoothing) Note =

dim(J)

»Recall: in previous models, = dim(N) o
# of parameters are finitce—] =#of Bi's| - =

»nonparametric regressions:

§_n}-odelzy =fx, .o, xﬁ) + & o

\ Bigi . 2’3' 00 02 04 - 06 1.0
& . . : 1, | may consider the mean E(Yy)
» parametric regression: assume fis from a family y __é_{g_
& ! as a free parameter at ever X

of functions, in which # of parameters is finite §
o1 lunctions Al :

= nonparametric regression: assume fis smooth only (# of parameters = o

B
@ p. 8-10
(> method: (see example)—» at each X, g\x =2 G
method Cxamplc L, Jx=" 1155
= 1. select a window (= local information), and a weighting oo ;Zj
(ull).’nc‘l;(w function (= closer points, more contribution) ng;t ~°°‘i,";°-4'}.t
width ; ) ] i L
|6) i 2 2. use weighted (closer points, higher weights) average of Xo -~
O?jifT'?S.rt y/'s in the window to estimate fitted value(cs (Recall weightivg] T 1 o)
3. repeat as the window moves WLS | function-
no « width of window is an issue 00 lorge window :

sensible == oo L= -
QSﬁl:'nﬁon (larger window, smoother curve) > iﬁ,’f?—b F;ﬁ?% X0,

omm,;m = can plot fitted value for a variety > Underﬁl:fing 1Yz BotBX+E

Bi's of widths and pick best result too small window weighted -

= different width of window to » F-'ﬁ*% "iﬁd' “"iﬁe s d=Bot€
estimate f'along the range of x = overf, 'H""'g oz Bﬁg

= sensitive to outliers: use median, not average
» LOESS: change step 2 to locally weighted (1% or 2" order) . ; 9

polynomial regression (see example)

» difficult if extrapolation is required (same difficulty in
regression spline)e-<E-5 paramebric model : 3; = {; B; %(X)

» nonparametric regressions are useful for fitting a curve for
residual plots, added variable plots, partial residual plots

* Reading: Faraway (2005, 15t ed.), 7.2.3; Faraway (2006), chapter 11
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