
p. 8-1

Mean structure

• idea: data are generated from an underlying system, which is assumed to have 

the form:

• regression approximates the mean structure f by a linear combination of 

(known) base functions gi(x1,…, xm)’s, i=1, …, p, i.e.,

when the structure of f is simple and almost linear, it can be approximated 

by a simple structure with fewer terms, e.g.,

 Q: nature is simple?

 Q: are there sufficient data to support/fit a complex model?

when f is complex and non-linear  need more terms

to get a good approximation

 more parameters, need more degrees of freedom, i.e., more data

 e.g., 2 levels, only linear effects; 3 levels, linear and quadratic effects 

 Q: what other complex models?

• base functions for quantitative and qualitative predictors xi’s are defined in 

different ways

y = f(x1, …, xm) + ε, where f is unknown.

p. 8-2

• xi → (xi+a)/b or y → (y+a)/b, where a and b are given constants. 

a: change of location, b: change of scale

• Q: why we might want to do this?

 predictors of similar magnitude are easier to compare

 rescaling may make easier to read and may aid interpretability

 numerical stability is enhanced when all predictors are on a similar scale

 for experimental data, it’s often that we code two levels (say, 20°C, 30°C) →
(−1, 1); three levels (say, 20°C, 30°C, 40°C) → (−1, 0, 1)

• influence caused by location/scale change on xi (i.e., xi → (xi+a)/b)

 (under a model with intercept) overall F-test, t-test, R2, all unchanged

 change: → , →
• influence caused by location/scale change on y (i.e., y → (y+a)/b)

 (under a model with intercept) overall F-test, t-test, R2 unchanged

 and change: → , → for each i, →

σ̂

β̂

β̂

location and/or scale change

 Reading: Faraway (2005, 1st ed.), 5.2  Further reading: D&S, 16.2, 16.3

β̂ σ̂
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p. 8-3

Polynomial regression

• Q: when to use polynomial regression?  the relationship between 

response and quantitative predictors is smooth, but not a straight line. 

β
1

ˆβ
2

ˆ
 x and x2 could be highly correlated

 location shift: x→x+c  unchanged, but may 

become significant

 recommendation: do not remove insignificant lower-order

terms from model when the highest-order term is significant

• idea supports the approach  any smooth function (mean structure of the 

underlying system) can be approximated by a polynomial of high enough degree

• one predictor case:

 choice of d

 start with y=β0+β1x, keep adding polynomial terms until 

last term added is not significant.  danger: stop too soon

 start with a large d and recursively remove insignificant largest term

 use added variable plot/partial residual plot to gain information about d

 Q: Consider the model y=β0+β1x+β2x
2. what if β1 not significant, but β2 is 

significant? should x be removed from the model?

y = β0 + β1 x + β2 x2 + ... + βd xd + ε

p. 8-4

• two predictors x1, x2 case:

y = β0 + β1 x1 + β2 x2 + β11 x1
2 + β22 x2

2 + β12 x1x2 + ε     (d=2, 2nd-order model)
 the cross-product term x1x2 can be interpreted as an "interaction" effect, e.g.,

 models for more predictors can be similarly extended

 increasing degree d  model may have too many parameters

• orthogonal polynomials

 polynomial terms can cause numerical instability (especially when d large) and 

collinearity

 example: 2nd-order model

= β0 + β1 + β2

= β0 + β1 + β2

# of 
xi’s

d=2 d=3

2 6 10

3 10 20

4 15 35
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p. 8-5
 define z0=1, z1=a1+b1x1, z11=a2+b2x1+c2x1

2, z111=a3+b3x1+c3x1
2+d3x1

3, ...

Find ai, bi, ci, ..., that make zj
Tzk=0 if j≠k (and ||zi||=1 sometimes) 

0εy
T =ˆˆ

 change model based on polynomial terms to model based on z’s, e.g.,

the two models have same column space Ω (i.e., same R2, , overall F ), but 

interpretation of β’s and β’ ’s are different (i.e., different estimates, t-tests)

 orthogonality can save works when selecting model (do not have to refit after 

deleting term), it's more convenient for fitting and testing

• properties of polynomial model

 offer more flexible relationship

 remember that it's an approximation, we usually do not

believe it exactly represents the underlying reality

 can apply regression to obtain z0 , z1, z11,... (note: ), e.g., 

regress x1 on z0 , then the residuals is proportional to z1 ; regress

x1
2 on z0 , z1 and the residuals is proportional to z11. In R,  built-

in function is provided to construct orthogonal polynomials.

 cross-product terms (i.e., interactions) can be defined in a 

similar manner (e.g., z12= a+b x1+c x2+d x1x2 , regress

x1x2 on z0 , z1, z2, and the residuals are proportional to z12)

p. 8-6

 polynomials have the advantage of smoothness

 but, have the disadvantage that each 

data point affects the fit globally

 For larger values of d, the fitted polynomial curves may become wiggly. 

reason: the curve may capture the random variation, rather than the 

overall shape of the relationship between predictors and response.

 polynomial model is hard to fit "jump function"

 Reading: Faraway(2005, 1st ed.), 7.2.2  Further reading: D&S, 12.1, 12.3, 22.2

• Recall. polynomial regression: suitable for smooth mean 
structure, but cannot capture local abrupt change (example?) 

Q: how to relax the smoothness restriction? 

 one solution: broken line regression.

• Q: when to use broken line regression? 

broken stick (line) regression (segmented regression)

• suppose the break occurs at the known value c, define the base function (where c is 

called a knot): 

 believe that different regression models apply in different regions

of data, and the fit should be continuous at the broken points

0,    if x ≤ c.

1, if x > c, 
dc(x) = {
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p. 8-7

• generalization: more knot points or more predictors  define more base functions

• broken curve regression: y = β0+β1 x+β2 x
2+β3 (x- c)dc(x)+β4 (x- c)2dc(x)+ε

= β0 + β1 + β2 + ε

 the two lines meet at c  continuous fit

 notice only 3 parameters in the model  one degree of 
freedom is saved because of the continuity restriction

 Reading: Faraway (2005, 1st ed.), 7.2.1  Further reading: D&S, 14.3

regression spline and LOWESS

(β0 - β2 c)+ (β1 + β2 ) x,    if x > c,

β0 + β1x, if x ≤ c, 
E(y) = {

• model: y = β0 + β1 x + β2 (x- c)dc(x) + ε

• when c is unknown

 can regard c as a parameter  not a linear model any more 

 can be estimated by nonlinear regression

p. 8-8

• regression spline

 concept: define different base functions to fit data

 power function: smoothness, but non-zero across the whole range

 broken line: lesser smooth, but localizing the influence of data point

 B-spline: compromise between smoothness and local influence

 cubic B-spline base functions: g1,..., gk- 4 defined on an interval [a, b] with 

knot-points t1 ≤ ... ≤ tk (no need to be equally spaced) satisfying:

• concept: fitting using local points ⇔ better fit

using global points ⇔ smoothness

Q: which should you choose for your data? 

using local points or global points?

1. non-zero on interval defined by 5 successive 

knots and zero elsewhere  local influence

2. a cubic polynomial for each sub-interval between 

successive knots

3. continuous, and continuous in its 1st and 2nd

derivatives at each knot  smoothness

4. integrate to one over its support
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p. 8-9

knot points: 0, 0, 0, 0, 0.2, 0.4, 0.5, 0.6, 0.7, 

0.8, 0.85, 0.9, 1, 1, 1, 1

• LOWESS (LOcally WEighted 

Scatterplot Smoothing) 

Recall: in previous models, 

# of parameters are finite

nonparametric regressions:

model: y = f(x1, …, xm) + ε

Q: why the knots are dense in some region?

 base function at the ends of the interval are 

defined differently to ensure continuity

 regress y on these B-spline base functions, 

i.e.,

y = Σi βi gi(x) + ε
(Note: gi’s are known functions for given t’s 

 it’s still a linear model)

 nonparametric regression: assume f is smooth only (# of parameters = ∞)

 parametric regression: assume f is from a family 

of functions, in which # of parameters is finite

p. 8-10

 method: (see example)

1. select a window ( local information), and a weighting 

function ( closer points, more contribution)

2. use weighted (closer points, higher weights) average of 

yi's in the window to estimate fitted value

3. repeat as the window moves

 Reading: Faraway (2005, 1st ed.), 7.2.3; Faraway (2006), chapter 11 

 width of window is an issue

(larger window, smoother curve)

 can plot fitted value for a variety

of widths and pick best result

 different width of window to 

estimate f along the range of x

 LOESS: change step 2 to locally weighted (1st or 2nd order) 

polynomial regression (see example)

 difficult if extrapolation is required (same difficulty in 

regression spline)

 nonparametric regressions are useful for fitting a curve for 

residual plots, added variable plots, partial residual plots

 sensitive to outliers: use median, not average
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