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Mean structure

• idea: data are generated from an underlying system, which is assumed to have 

the form:

• regression approximates the mean structure f by a linear combination of 

(known) base functions gi(x1,…, xm)’s, i=1, …, p, i.e.,

when the structure of f is simple and almost linear, it can be approximated 

by a simple structure with fewer terms, e.g.,

 Q: nature is simple?

 Q: are there sufficient data to support/fit a complex model?

when f is complex and non-linear  need more terms

to get a good approximation

 more parameters, need more degrees of freedom, i.e., more data

 e.g., 2 levels, only linear effects; 3 levels, linear and quadratic effects 

 Q: what other complex models?

• base functions for quantitative and qualitative predictors xi’s are defined in 

different ways

y = f(x1, …, xm) + ε, where f is unknown.
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• xi → (xi+a)/b or y → (y+a)/b, where a and b are given constants. 

a: change of location, b: change of scale

• Q: why we might want to do this?

 predictors of similar magnitude are easier to compare

 rescaling may make easier to read and may aid interpretability

 numerical stability is enhanced when all predictors are on a similar scale

 for experimental data, it’s often that we code two levels (say, 20°C, 30°C) →
(−1, 1); three levels (say, 20°C, 30°C, 40°C) → (−1, 0, 1)

• influence caused by location/scale change on xi (i.e., xi → (xi+a)/b)

 (under a model with intercept) overall F-test, t-test, R2, all unchanged

 change: → , →
• influence caused by location/scale change on y (i.e., y → (y+a)/b)

 (under a model with intercept) overall F-test, t-test, R2 unchanged

 and change: → , → for each i, →

σ̂

β̂

β̂

location and/or scale change

 Reading: Faraway (2005, 1st ed.), 5.2  Further reading: D&S, 16.2, 16.3

β̂ σ̂
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Polynomial regression

• Q: when to use polynomial regression?  the relationship between 

response and quantitative predictors is smooth, but not a straight line. 

β
1

ˆβ
2

ˆ
 x and x2 could be highly correlated

 location shift: x→x+c  unchanged, but may 

become significant

 recommendation: do not remove insignificant lower-order

terms from model when the highest-order term is significant

• idea supports the approach  any smooth function (mean structure of the 

underlying system) can be approximated by a polynomial of high enough degree

• one predictor case:

 choice of d

 start with y=β0+β1x, keep adding polynomial terms until 

last term added is not significant.  danger: stop too soon

 start with a large d and recursively remove insignificant largest term

 use added variable plot/partial residual plot to gain information about d

 Q: Consider the model y=β0+β1x+β2x
2. what if β1 not significant, but β2 is 

significant? should x be removed from the model?

y = β0 + β1 x + β2 x2 + ... + βd xd + ε
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• two predictors x1, x2 case:

y = β0 + β1 x1 + β2 x2 + β11 x1
2 + β22 x2

2 + β12 x1x2 + ε     (d=2, 2nd-order model)
 the cross-product term x1x2 can be interpreted as an "interaction" effect, e.g.,

 models for more predictors can be similarly extended

 increasing degree d  model may have too many parameters

• orthogonal polynomials

 polynomial terms can cause numerical instability (especially when d large) and 

collinearity

 example: 2nd-order model

= β0 + β1 + β2

= β0 + β1 + β2

# of 
xi’s

d=2 d=3

2 6 10

3 10 20

4 15 35
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 define z0=1, z1=a1+b1x1, z11=a2+b2x1+c2x1

2, z111=a3+b3x1+c3x1
2+d3x1

3, ...

Find ai, bi, ci, ..., that make zj
Tzk=0 if j≠k (and ||zi||=1 sometimes) 

0εy
T =ˆˆ

 change model based on polynomial terms to model based on z’s, e.g.,

the two models have same column space Ω (i.e., same R2, , overall F ), but 

interpretation of β’s and β’ ’s are different (i.e., different estimates, t-tests)

 orthogonality can save works when selecting model (do not have to refit after 

deleting term), it's more convenient for fitting and testing

• properties of polynomial model

 offer more flexible relationship

 remember that it's an approximation, we usually do not

believe it exactly represents the underlying reality

 can apply regression to obtain z0 , z1, z11,... (note: ), e.g., 

regress x1 on z0 , then the residuals is proportional to z1 ; regress

x1
2 on z0 , z1 and the residuals is proportional to z11. In R,  built-

in function is provided to construct orthogonal polynomials.

 cross-product terms (i.e., interactions) can be defined in a 

similar manner (e.g., z12= a+b x1+c x2+d x1x2 , regress

x1x2 on z0 , z1, z2, and the residuals are proportional to z12)
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 polynomials have the advantage of smoothness

 but, have the disadvantage that each 

data point affects the fit globally

 For larger values of d, the fitted polynomial curves may become wiggly. 

reason: the curve may capture the random variation, rather than the 

overall shape of the relationship between predictors and response.

 polynomial model is hard to fit "jump function"

 Reading: Faraway(2005, 1st ed.), 7.2.2  Further reading: D&S, 12.1, 12.3, 22.2

• Recall. polynomial regression: suitable for smooth mean 
structure, but cannot capture local abrupt change (example?) 

Q: how to relax the smoothness restriction? 

 one solution: broken line regression.

• Q: when to use broken line regression? 

broken stick (line) regression (segmented regression)

• suppose the break occurs at the known value c, define the base function (where c is 

called a knot): 

 believe that different regression models apply in different regions

of data, and the fit should be continuous at the broken points

0,    if x ≤ c.

1, if x > c, 
dc(x) = {
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• generalization: more knot points or more predictors  define more base functions

• broken curve regression: y = β0+β1 x+β2 x
2+β3 (x- c)dc(x)+β4 (x- c)2dc(x)+ε

= β0 + β1 + β2 + ε

 the two lines meet at c  continuous fit

 notice only 3 parameters in the model  one degree of 
freedom is saved because of the continuity restriction

 Reading: Faraway (2005, 1st ed.), 7.2.1  Further reading: D&S, 14.3

regression spline and LOWESS

(β0 - β2 c)+ (β1 + β2 ) x,    if x > c,

β0 + β1x, if x ≤ c, 
E(y) = {

• model: y = β0 + β1 x + β2 (x- c)dc(x) + ε

• when c is unknown

 can regard c as a parameter  not a linear model any more 

 can be estimated by nonlinear regression
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• regression spline

 concept: define different base functions to fit data

 power function: smoothness, but non-zero across the whole range

 broken line: lesser smooth, but localizing the influence of data point

 B-spline: compromise between smoothness and local influence

 cubic B-spline base functions: g1,..., gk- 4 defined on an interval [a, b] with 

knot-points t1 ≤ ... ≤ tk (no need to be equally spaced) satisfying:

• concept: fitting using local points ⇔ better fit

using global points ⇔ smoothness

Q: which should you choose for your data? 

using local points or global points?

1. non-zero on interval defined by 5 successive 

knots and zero elsewhere  local influence

2. a cubic polynomial for each sub-interval between 

successive knots

3. continuous, and continuous in its 1st and 2nd

derivatives at each knot  smoothness

4. integrate to one over its support
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knot points: 0, 0, 0, 0, 0.2, 0.4, 0.5, 0.6, 0.7, 

0.8, 0.85, 0.9, 1, 1, 1, 1

• LOWESS (LOcally WEighted 

Scatterplot Smoothing) 

Recall: in previous models, 

# of parameters are finite

nonparametric regressions:

model: y = f(x1, …, xm) + ε

 nonparametric regression: assume f is smooth only (# of parameters = ∞)

Q: why the knots are dense in some region?

 base function at the ends of the interval are 

defined differently to ensure continuity

 regress y on these B-spline base functions, 

i.e.,

y = Σi βi gi(x) + ε
(Note: gi’s are known functions for given t’s

 it’s still a linear model)

 parametric regression: assume f is from a family 

of functions, in which # of parameters is finite
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 method: (see example)

1. select a window ( local information), and a weighting 

function ( closer points, more contribution)

2. use weighted (closer points, higher weights) average of 

yi's in the window to estimate fitted value

3. repeat as the window moves

 Reading: Faraway (2005, 1st ed.), 7.2.3; Faraway (2006), chapter 11 

 width of window is an issue

(larger window, smoother curve)

 can plot fitted value for a variety

of widths and pick best result

 different width of window to 

estimate f along the range of x

 LOESS: change step 2 to locally weighted (1st or 2nd order) 

polynomial regression (see example)

 difficult if extrapolation is required (same difficulty in 

regression spline)

 nonparametric regressions are useful for fitting a curve for 

residual plots, added variable plots, partial residual plots

 sensitive to outliers: use median, not average
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dummy variable (indicator variable, coding)

• categorical (qualitative) predictors

 nominal v.s. ordinal

 examples: male/female, treatment/control, eye colors, blocks, ...

 qualitative in nature:

 Q: what properties can we explore for qualitative predictor? 

category i → yij , µi = E(yij)  can only study difference between µi’s

(cf., quantitative predictor)

 Q: how to fit these predictors into the format of linear regression model

Y = Xβ +ε?  Ans: dummy variables

• one dichotomous predictor: two categories

 for a dichotomous predictor C with two categories c1 and c2, define a dummy 

variable d:

 for a data set with response y, one quantitative predictor x, and one qualitative

predictor C (dummy variable d), possible models are:

model 1: y = β0 + β1d + ε,                model 2: y = β0 + β1x + ε, 

model 3: y = β0 + β1d + β2x + ε,      model 4: y = β0 + β1x + β2xd + ε, 

model 5: y = β0 + β1d + β2x + β3xd + ε

 values are symbols, no quantitative meaning

 no value exist between categories

1,    if C = c2 .

0, if C = c1 , 
d(C) = {
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 Q: how to interpret βi's in models 1~5?

 model 1:

 model 2:

 model 3:

 model 4:
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 model 5:



 alternative coding of dummy variable (better orthogonality)

Q: how to interpret βi's in models 1~5 under this coding?

 model 1:



 analysis strategy: start from the full model (model 5) if there are enough

degrees of freedom, and then test if some terms can be eliminated

1,      if C = c2 .

- 1, if C = c1 , 
d(C) = {

 identical methodology applies for more than 2

categories and more quantitative predictors

 Q: what if data in the two categories have different variance? 
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 ANalysis of COVAriance: testing model 3 (Ω) against model 2 (ω) 

(more than 2 categories and more quantitative predictors is 

allowed). The quantitative predictor is called covariate and is 

expected to have the same effect in all categories. The difference

between categories is assumed to be an additive effect.

 various coding of dummy variables: 4 categories c1, c2, c3, c4 example

 consider the model: 

 properties of treatment coding:



100c4

010c3

001c2

000c1

d3d2d1

treatment coding

300c4

−120c3

−1−11c2

−1−1−1c1

d3d2d1

Helmert coding

100c4

010c3

001c2

−1−1−1c1

d3d2d1

sum coding

• one polytomous predictor: more than two categories

 for k categories, k−1 dummy variables are needed to depict the difference

between categories (one parameter is used to represent constant term)
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 treats c1 as a reference

 it is convenient if a "standard" categories exists

 d1, d2, and d3 are mutually orthogonal, but not orthogonal to constant term

 properties of Helmert coding:

 constant term, d1, d2, and d3 are orthogonal when there are equal # of 

observations in each categories

 hard to interpret parameters

 may suitable for ordinal qualitative predictor
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 Note: the choice of coding does not affect the R2, and overall F-test

(to test H0: β1=β2=β3= 0, the three codings have same ω and Ω)

 the overall F-test is one-way ANOVA (ANalysis Of VAriance)

 Q: how to work with quantitative predictors?  identical methodology

as in 2 categories case. Q: how to interpret parameters in the case?

σ̂

 properties of sum coding:

 β0 represent overall mean

 compare each category with the overall mean

 lesser orthogonal
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• two qualitative predictors 

(say, A: I=3 categories a1, a2, a3; B: J=4 categories, b1, b2, b3, b4)

 number of different category combinations = 3×4 =12, 

denote their means as µij, i=1, 2, 3 and j=1, 2, 3, 4, i.e.,

 model 1:

 model 2:

 model 3:

 model 4:

 Q: how to depict the difference between µij’s?

consider the following linear models:

nij = number of observations in category A=ai and B=bj
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 model 5:

Q: how to perform interaction coding? what is interaction? 

# of parameters: 1 + 2 + 3 + 6 = 12 interaction plot: replace µij’s

by cell means

2-factor interaction

Two-way (sequential) ANOVA

 anova(y~1+A+B+A:B)

1) test ω1:model 1 (y~1) against Ω1:model 2 (y~1+A) [dfω − dfΩ =2]

2) test ω2:model 2 (y~1+A) against Ω2:model 4 (y~1+A+B) [dfω − dfΩ =3]

3) test ω3:model 4 (y~1+A+B) against Ω3:model 5 (y~1+A+B+A:B) [dfω − dfΩ =6]
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 invariant to the choice of dummy variables if they generate same ω and Ω
 ANOVA could have different results when the order of effect sequence is changed, 

e.g., anova(y~1+B+A+A:B):

α) test ω1:model 1 (y~1) against Ω1:model 3 (y~1+B) [dfω − dfΩ =3]

β) test ω2:model 3 (y~1+B) against Ω2:model 4 (y~1+B+A) [dfω − dfΩ =2]

χ) test ω3:model 4 (y~1+B+A) against Ω3:model 5 (y~1+B+A+A:B) [dfω − dfΩ =6]

 Reading: Faraway(2015, 1st ed.), chapter 13, 14.1, 15.1  Further reading: D&S, chapters 14, 23

• identical methodology applies for more qualitative (3-factor interaction, 4-factor 

interaction, …) and quantitative predictors (similar modeling to what in LNp.8-12~13)

 anova(y~1+A+B+A:B) and 

anova(y~1+B+A+A:B) will have 

identical results when orthogonality 

exists between the 3 groups of effects: 

span{di
A’s}, span{dj

B’s}, span{dij’s},

because in the case, RSSω − RSSΩ
would equal for 1) and β),   2) and α), 

3) and χ)
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• transformation of response

Box-Cox transformation family:

 tλ(y) is continuous in λ: for fixed y>0, 

 λ=1  no transformation, λ=0  log, λ≠0 or 1  power transformation

 model: tλ(y) = Xβ + ε,   ε ∼N(0, σ2I)

 parameters: λ, β, σ
 can write down likelihood for estimation and testing of λ
 choice of transformation becomes a estimation/test problem

 the log-likelihood is

L(λ) = (−n/2) log(RSSλ /n)+(λ- 1) Σ log(yi),

where RSSλ = residual sum of square when using tλ(y) as response, i.e.,

Transformation
• Recall:

 objective: for some data, data after transformation can better fit a linear model

 Q: how to choose an appropriate transformation?

 transformation can be applied on response and on predictors

goodness of fit adjustment

log(y),       if λ=0. 

(yλ- 1)/λ, if λ≠0, 
tλ(y) = {
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 estimation of λ: choose λ to fit data well using maximum likelihood. 

 can compute L(λ) for various values of λ and compute exactly to 

maximize L(λ)

 but usually is not a nice round number, e.g., = -0.17. It would be 

hard to explain what this new response means. 

 to avoid this, maximize L(λ) over a grid of values, such as {-2, -1, -1/2, 

0, 1/2, 1, 2}. This helps with interpretation.

 for outside [−2, 2], pay more attention on whether

such transformation is required

 Q: why not just minimize RSSλ to estimate λ?

λ̂

λ̂λ̂

λ̂

 test of λ: is the transformation really necessary?

 we can answer the question form a C.I. for λ
 likelihood ratio test (H0: λ = λ0 vs. HA: λ ≠ λ0):

−2[L(λ0) – L( )] ~ χ1
2 under H0

 a 100(1- α)% C.I. for λ can be formed by: 

{λ | L(λ) > L( ) - (1/2) χ1
2(1- α) }

 is λ=1 in the C.I.? if so, may as well stay with 

no transformation.

 if rounding    , check that rounded value is in the C.I.λ̂

λ̂

λ̂
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 some notes:

 the Box-Cox method gets upset by outliers --- e.g., 

if see =5, this is probably the reason (Q: why?)

 what if some yi<0? adding a constant

 if maxi yi/mini yi (> 1) is small, Box-Cox won’t do anything --- power

transforms are well approximated by linear transformations over short intervals

 should the estimation of λ count as an extra parameter to be 

taken account of in the degrees of freedom? --- difficult question

 Box and Cox (1964) formulate the problem of choosing λ
to make the errors as nearly like a normal sample as possible

λ̂

• transformation of predictors

 Recall: can use some graphical methods, such as added variable plots and 

partial residual plot, to offer suggestions for transforming the predictors

 could consider Box-Cox family of transformation for each predictor as follows:

 pick λ that minimizes RSSλ (Q: why only RSSλ here?) to transform xi to tλ(xi)

 repeat the procedure for each i  lot of works

 correct transformation for each predictor may depend on getting 

the others right  may need to perform the procedure for all i’s several rounds

y=β0+βi xi+Σj≠i βjxj+ε  y=β0+βi
∗ tλ(xi)+Σj≠i βjxj+ε, where tλ can be xλ or log(x)
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 a simpler method

 approximate xi
λ by xi + (λ- 1) xilog(xi) (i.e., first 2 terms in Taylor’s expansion

of xλ w.r.t. λ) to determine the best λ  add the terms xilog(xi) to this model

 suppose xilog(xi) has regression coefficient η  test H0:η=0. 

If accept, no transformation; if rejected, do transformation

 βi
∗ xi

λ ≈ βi
∗ [ xi+(λ- 1) xilog(xi) ]  = (λ- 1)  =  (    /    )+1η̂ β̂

*

i
η̂ β̂

*

i

• Some issues in transformation

 transformation can be used to 

 stabilize variance

 make errors nearly normally distributed

 a transformation of scale may also allow use of a simpler model

 these four goals for transformation will not always be met by 

the same transformation, and compromises may be required

 transformation of Y can alter the error structure, e.g., 

additive ↔ multiplicative in exp/log. In practice, try different transformation

and check if the residuals satisfy the conditions required for linear regression

 prediction in Y-space  back-transforming, same for C.I. for the prediction of Y

 It may be difficult to relate the parameters of the untransformed model to the 

parameters of transformed model. After transforming, regression 

coefficients will need to interpreted w.r.t. the transformed scale.

 improve fitting

 Reading: Faraway (1st ed.), 7.1  Further reading: D&S, chapters 13

λ̂


