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 unfortunately, in real data set, it’s rare the pattern is so clear

(Q: what will you conclude from the residual plot on the right?)

unsatisfactory

residual plot

plot residuals against ...

xk time order

non-constant 

variance

1. weighted least square

2. transform y

1. weighted least square

2. transform y

weighted 

least square

curvature in 

mean structure

1. add extra term

2. transform y

1. add extra term of xk

2. transform y

add term of 

time in model

ŷ

• possible remedies for unsatisfactory residual plots

• if not sure, plot absolute values of residuals against , xk’s, time order 

• when non-constant variance exists, will be more variable than the best estimates

( unbiased but not BLUE) and wrong ( test and C.I. inaccurate)

ŷ

σ̂

 Reading: F, 4.1.1  Further reading: D&S, 2.5

β̂
OLS

β̂
OLS

Non-constant variance

 in models with many terms or models with complex non-linear

mean structure, cannot necessarily associate shapes in a residual 

plot with a particular problem with the assumptions, e.g.,

true model:    E(Y)=|x1|/[2+(1.5+x2)
2] with constant variance

fitted model:  E(Y)=β0+β1x1+β2x2

p. 7-10

• remedies for non-constant variance

 weighted least squares

 need weighting information (may from plotting residual vs. xk) or

 model the form of Σ and using IRWLS

 transform Y (may use information from plotting residual vs. ) 

 idea: find a transformation h such that var(h(y
x
)) is a constant, (Q: how? Hint: 

δ-method)

ŷ

h(y
x
)=h(E(y))+(y- E(y))h′(E(y))+...  var(h(y)) ≈ var(y)[h′(E(y))]2=c

hope var(h(y)) to be a constant c h′(E(y
x
)) ∝ 1/(var(y

x
))1/2 

h(E(y)) ≡  1/(var(y))1/2 d(E(y))

 Example 1: var(y
x
)∝[E(y

x
)]2  suggest h(y) = log(y)

 Example 2: var(y
x
)∝E(y

x
)  suggest h(y) = y1/2

 Note: in residual plot, tend to see [var(y
x
)]1/2 rather than var(y

x
) (example?)

• It’s better try to understand the cause of non-constant variance before 

taking any remedies, e.g., (1) larger response have more “room” to vary, 

(2) response constrained to lie between a maximum and a minimum, 

(3) response from Poisson distribution or binomial distribution, … 

 discovering reasons to support the remedies you are going to take

NTHU STAT 5410, 2022  Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)



p. 7-11
 practical problems: 

 if yi≤0, for some i, square root or log transformations fail  can do 

transformation on yi+d, where d is some small amount s.t. yi+d>0 for all i

 transformation may make interpretation difficult

sqrt(yi) var(yi) ∝ E(yi) useful for count data from Poisson distribution

log(yi) var(yi) ∝ [E(yi)]
2 very common, good candidate if the range of Y

is very broad

1/yi var(yi) ∝ [E(yi)]
4 appropriate when responses are 

“bunched” near zero, but, in 

markedly decreasing numbers, 

large responses do occur

sin- 1(sqrt(yi)) var(yi) ∝ E(yi)(1- E(yi)) for binomial proportions

 example of transformations

 do nothing  because (i) is still unbiased, although not BLUE; (ii) tests and 

C.I. inaccurate, but bootstrap may be used to get more accurate results

 use generalized linear model (e.g., Poisson/binomial y  var(y
x
): function of E(y

x
))

β̂
OLS

• formal test for non-constant variance

 regressing absolute residuals on or xk’sŷ

p. 7-12

 data without replication  assign variance a model, test whether 

parameters in the model equal zero (see Weinberg (2005), 8.3.2)

 Reading: Faraway (2005, 1st ed.), 4.1.1  Further reading: D&S, 2.2, 13.6

Curvature in the mean of residuals

 data with replication  can estimate variances of distinct xi’s

and test their homogeneity (see D&S, 2.2) 

 formal test may be good at detecting a particular kind of non-constant variance 

(depending on the alternative hypothesis), but always do the residual plots

• A simple test for curvature: test whether a plot of residuals versus a 

quantity U (e.g., or xk’s) is a null plot or has curvature

 refit the original mean structure with an additional term U2 added 

 significant t-test for U2 suggests curvature (be aware of 

collinearity between U2 and other terms in original mean structure)

ŷ

• related to the concept of lack-of-fit (tests for lack-of-fit can be used if possible), i.e., 

the current model, E(Y)=Xβ, may need to be modified for achieving better fitting

• Q: how to identify why the non-linearity happened?

 plot residuals against  can tell you whether

some problems exist, but cannot tell you why

ŷ
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 added variable (partial regression) plots 

 recall: 

Y = X1β1 + X2β2 + ε = (X1β1 + Η1X2β2 )+((I−H1)X2β2 + ε )

1. regress Y on all predictors except xk  get residuals

2. regress xk, on all predictors except xk  get residuals

 : part of Y not explained by all predictors except xk

 : part of xk not explained by all predictors except xk

3. plot versus .

)(ˆ xε kY

ε xk
ˆ

)(ˆ xε kY

ε xk
ˆ

)(ˆ xε kY ε xk
ˆ

 the slope of a fitted line to the added variable plot is .

and intercept=0 (the line passes (0, 0))

β̂
k

 plot residuals against xk’s or y against xk’s  may tell you why

this problem happened, but in multivariate regression there may 

exist correlation between predictors, then it’s difficult to find why

 a strong relationship between the plotted quantities

corresponds to a strong adjusted relationship between y and xk

 can be used to check if new predictors should be included

xβε kk
ˆˆ + xk

β
j

ˆ ŷ ε̂ β
k

ˆε̂β
j

ˆ

partial residual plots

 plot versus  same interpretation as added variable plots

 y – Σj≠k xj =      + - Σj≠k xj =      + xk

p. 7-14

many many modeling techniques in addition to linear regression can be 

adopted (GLM, additive model, nonparametric regression, ACE, AVAS, 

regression trees, regression spline, MARS)

 transformation of response or predictors. idea behind the approach: 

(i) a statistical model is a local approximation of 

the underlying system

(ii) when the mean structure of the underlying system is non-

linear and complex, a linear approximation over a relatively 

wide range of X may be inadequate (e.g., 

E(Y) = β0 x1
β1 x2

β2)

(iii)we sometimes can find suitable transformations of data that 

will permit a non-linear model to be better approximated

(after transformation) by a linear one (e.g., 

E(log(Y)) ≈ log(β0)+β1 log(x1)+β2 log(x2))

• remedies for curvature  adjust the mean structure, E(Y)=Xβ, for better fitting

add more (polynomial or cross product) terms

 may identify required terms from residual plot, added variable 

plot, or partial residual plot (polynomial model will be 

introduced in further lecture)
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 There exists numerical method for finding a suitable transformation

to improve the fit and/or remedy non-constant variance (e.g., Box-

Cox transformation, future lectures)

transformation non-linear model

log(y) log(x) E(y) = α ∏ xj
βj

log(y) x E(y) = α exp(Σβjxj)

y log(x) E(y) = α + Σ βj log(xj)

1/y 1/x E(y) = 1/[α + Σ (βj/xj)]

1/y x E(y) = 1/(α + Σ βjxj)

y 1/x E(y) = α + Σ βj (1/xj)

 some 

examples:

 Reading: F, 4.3, 7.2.4  Further reading: D&S, 8.2

• Q-Q plot 

 Q: we often see the statement “z1, z2, …, zm are i.i.d. from a cdf 

F”, how to examine if F is an appropriate distribution assumption 

for zi’s? (Hint: examine the similarity btw cdf and empirical cdf)

 normal (probability) plot: assessing normality assumption of ε
(Note: tests and C.I. depend on normality assumption) 

1. sort the data .

2. plot against Φ−1(i/(n+1)), where Φ is the cdf of N(0, 1)

 If the residuals are normally distributed, an approximately 

straight-line relationship will be observed (null plot)

Various plots and tests for diagnostics

εεε ˆˆˆ )()2()1( n
≤≤≤ L

ε̂ )( i

p. 7-16

 for long-tail, (i) use test based on other distributions, or 

bootstrap, or permutation tests (ii) for estimation, use robust 

methods (e.g., least absolute deviation instead of least square)

 asymmetric, transform Y (e.g., Box-Cox method)

 short-tail can be reasonably ignored

long tail

short tailasymmetric

null plot

 formal tests exists (such as Kolmogorov-Smirnov

test), but not as flexible as the Q-Q plot

• half-normal plot

1. sort the absolute data .

2. plot against Φ−1((n+i)/(2n+1))

 usually used to identify “extreme” values

 can be used to examine residuals, leverages, 

Cook’s statistics, treatment effects (especially 

for experimental data without replicates) 

|ˆ||ˆ||ˆ|
)()2()1(

εεε
n

≤≤≤ L

|ˆ|
)(

ε
i

 normal plot can be applied to identify extreme values (e.g., in residuals, 

leverages, Cook’s statistics, …): in the case, not interested in a straight line 

relationship, but rather looking for points that depart from the straight line

 non-normality: long-tail, short-tail, asymmetric

 worst case is long-tail; mild non-normality

can safely be ignored; the larger the sample 

size, the less troublesome the non-normality
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• diagnostic of correlated errors when a time order is available

 plot against time

 plot against , when i related to time

 use formal tests like the Durbin-Watson or runs test

 0 ≤ DW ≤ 4

 positively correlated  DW→0

 negatively correlated  DW→4

 under null (i.e., correlation=0)  DW≈2

 null distribution depends on X

 use GLS when you have correlated errors

ε̂

εiˆ 1+ εiˆ

 Reading: F, 4.1.2, 4.1.3  Further reading: D&S, 2.4, 2.7, chapter 7
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