
p. 7-2
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 for linear model with an intercept, its fitted model must pass the point (   ,    )yx

ε̂Ŷ

 residuals are useful for detecting lack of fit and checking model assumptions

(Q: Why residuals can do the works?

Y = Xβ  + ε  =     + 

Y = X1β1 + X2β2 + ε = (X1β1 + Η1X2β2 )+((I−H1)X2β2 + ε ) =        +       ) 
X

ε
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ˆ
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Leverage

• leverage: hi ≡Hii (Note 1. var(    )=(1-hi)σ2. Note 2. hi is known before observing Y)

xi whose hi is large  var(    ) small  fitted model has to force to fit close to yi

xi whose hi is small  var(    ) large  in this xi, model cannot fit so well

 hi roughly determines how close (xi , yi) to the regression surface (i.e., (xi , yi))

 observations with large hi's should be paid more attention. (Q: why?)

Q: why xi with 

large leverage

has stronger 

influence on fit?

Q: why is it called leverage?
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p. 7-3
• some facts about leverage:

 hi corresponds to a Mahalanobis distance defined by X (X without intercept), 

actually,

 "extreme" xi has large leverage

 a little change of yi value on point with large 

leverage will change the fit a lot

y
i

ˆ

• (internally) studentized residuals ri’s:

because var(    )=(1-hi)σ2,    let ri =      / [(1-hi)
1/2 ],

then var(ri) ≈ 1 (if model assumptions are correct)

 non-constant variance removed

 sum of ri’s is not zero

 studentized residuals are preferred in residual plots

 if there is some underlying heteroscedasticity (i.e., violation of var(ε)=σ2I) in the 

errors, studentization cannot correct it

εiˆ εiˆ σ̂

y
i

ˆ

 var(   ) = var(HY) = Hσ2  var(   ) = hiσ2

 dependence is very small in practice

 ri is slightly correlated with .

Ŷ

 Reading: Faraway (2005, 1st ed.), 4.2.1  Further reading: D&S, 8.1

Σ̂ x

1−
x

Σ̂x

xhi = 1/n + [1/(n−1)] (xi- )T (xi- ),

where is the estimated covariance of X

 Σ hi = p, , and 1 ≥ hi ≥ 1/n ∀ i 

(Q: what hi’s are too large? Note: an average leverage is p/n

 large leverage >> p/n  "rule of thumb": if hi > 2p/n,  look closer)
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p. 7-4

• an outlier is a point that does not fit the current model (Q: possible cause?)

 usually, large residual (Q: why?)

• Q: is there a problem if (raw or studentized) 

residuals are used to detect outliers? 

 outliers may affect the fit (see plot)

• idea: exclude ith observation and re-compute the estimates to get and      , 

where (i) denotes that the ith case has been excluded. Then, 

consider , where . (Q: why is it better in detecting outliers?)

var(           ) = σ2(1+xi
T(X(i)

TX(i))
−1xi)    (Hint. prediction of future observation)

• jackknife (or externally studentized, or crossvalidated) residuals

ti = (           )/ [(1+xi
T(X(i)

TX(i))
−1xi)

1/2 ]

which are distributed as t(n-1)-p under null, if model is correct and ε ~ N(0,σ2I)

βxy
(i)

T

i(i)
ˆˆ =

β
(i)

ˆ σ
2

(i)ˆ

yy
(i)i

ˆ−

yy
(i)i

ˆ−

σ (i)ˆyy
(i)i

ˆ−

• a simpler way to calculate ti (avoid doing n regression)

ti =     /[(1-hi)
1/2 ]  = ri ((n-p-1)/(n-p-ri

2))1/2

Outlier

σ (i)ˆεiˆ
• test for outliers

 given a specific case i, conclude an outlier if |ti| > tn-1-p
(α/2)

p. 7-5

• some problems about outliers:

 two or more outliers next to each other can hide each other

 an outlier in one model may not be an outlier in another when the variables have 

been changed or transformed  reinvestigate outliers when model changed

 the error distribution may not be Normal  larger residuals may be expected.

 for large datasets, individual outliers are usually much less of a problem from the 

viewpoint of fit. In this case, it's still worth identifying outliers if these types of 

points are worth knowing about in the particular application. For large datasets, 

we need only worry about clusters of outliers.

H0: no outlier in the n observations against H1: at least one outlier 

1-α∗ = 1-Prob(Type I error |H0) = Prob(all tests accept |H0) 

= 1-Prob( at least one rejected|H0) ≥ 1-Σi Prob(test i rejects |H0)  = 1-nα

 conclude an outlier if |ti| > tn-p-1
(α/2n)

 it's conservative, tends not to label points as outliers (especially when n large)

 in practice, a few (or all) ti's will be tested  problem of multiple testing:

need to adjust the significance level of the test accordingly 
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p. 7-6

 not outlier
 high leverage

 outlier
 low leverage

 outlier
 high leverage  high influence

• Q: What should be done if some observations are identified as outliers?

 check for a data entry error first

 Examine the physical context (sometimes, outliers may have physical significance)

 exclude the point from the analysis

 try to re-include later if model changed

 if exclude permanently, report

 dangerous to exclude them in an automatic manner

 Reading: Faraway (2005, 1st ed.), 4.2.2  Further reading: D&S, 8.1

 use robust regression when 

outliers cannot be identified as 

mistakes or aberrations

• an influential point may or may not be an outlier and may or may not have 

large leverage but it will tend to have at least one of those two properties.

Influential observation

Q1: what points are more 

influential?

Q2: what information should 

be included in the detection

of influential points? 

• Each observations have different influence/contribution to the 

fitted model. Our fitted model should not change too much (i.e., 

robust) just because of adding/dropping a specific observation.

• influential point: one whose removal from data would cause large change in the fit.

p. 7-7• measures of influence (Q: how to numerically characterize “large change in fit”?)

 change in coefficients: 

 change in fit:

ββ ˆˆ
(i)

−

 Cook’s statistics/distances (scale and unit free):

Di = (          )T(XTX)(          )/ (p )

= (              )T (              ) / (p )

= (1/p) ri
2 (hi/(1-hi))

 it's a combination of residual and leverage. (Q: what are the effects of 

residual and leverage on Cook’s statistic?)

 Q: how large is large? If assume X is multivariate Normal, can do a test on Di . 

However, normality may not be a reasonable assumption in practice.

 Others: DFFITS, Atkinson’s modified Cook’s statistics

• suggestion for identifying influential points: use relatively large Di as an indication

of a possible problem, then examine their           and/or                . 

ββ ˆˆ
(i)

− ββ ˆˆ
(i)

− σ̂
2

σ̂
2

ββ ˆˆ
(i)

−

• residual plots: plot residuals (or absolute values of residuals) against (i)    , (ii) xk (for 

predictors in model and not in model), (iii) combination (or transformation) of xk’s, 

(iv) time order (if available), (v) any other quantities relevant to residuals 

(Q: why draw residual plots?) 

ŷ

 Reading: Faraway (2005, 1st ed.), 4.2.3  Further reading: D&S, 8.3, 8.4

Residual plots

(Q: how large is large?)

(Q: how large is large?)
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p. 7-8
• in residual plots, 

 find overall patterns from the shape of all points (cf., residuals used in 

checking outliers or influential points  identifying individually unusual point)

• a satisfactory residual plot (null plot)

 constant variance

 no curvature in the mean of residuals

Note: one satisfactory residual plot cannot guarantee the 

residual plots for other variables will be satisfactory

• some possible patterns in unsatisfactory residual plots:

evidence of non-constant variance

curvature in the mean of residuals

 evidence of incorrectly specified 

mean structure

evidence of non-constant variance and 

incorrectly specified mean structure

 check assumptions: (i) non-constant variance; (ii) incorrectly specified 

mean structure (i.e., E(Y)=Xβ)

 rather subjective

p. 7-9
 unfortunately, in real data set, it’s rare the pattern is so clear

(Q: what will you conclude from the residual plot on the right?)

unsatisfactory

residual plot

plot residuals against ...

xk time order

non-constant 

variance

1. weighted least square

2. transform y

1. weighted least square

2. transform y

weighted 

least square

curvature in 

mean structure

1. add extra term

2. transform y

1. add extra term of xk

2. transform y

add term of 

time in model

ŷ

• possible remedies for unsatisfactory residual plots

• if not sure, plot absolute values of residuals against , xk’s, time order 

• when non-constant variance exists, will be more variable than the best estimates

( unbiased but not BLUE) and wrong ( test and C.I. inaccurate)

ŷ

σ̂

 Reading: F, 4.1.1  Further reading: D&S, 2.5

β̂
OLS

β̂
OLS

Non-constant variance

 in models with many terms or models with complex non-linear

mean structure, cannot necessarily associate shapes in a residual 

plot with a particular problem with the assumptions, e.g.,

true model:    E(Y)=|x1|/[2+(1.5+x2)
2] with constant variance

fitted model:  E(Y)=β0+β1x1+β2x2
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