NTHU STAT 5410, 2022 Lecture Notes
« > residuals are useful for detecting lack of fit and checking model assumptions "~
(Q: Why residuals can do the works?

examine &7 = c?
@—Y=XB +£,= Y+,g, ""‘.‘."""“ ,
Iack? true'Y =X, + Xzﬁz I (Xngl + HJ&@Z)""(U HI)XZlB2+ 3 ) = €x,)
> f‘&ed Y— XIBI"" 8*
fLé B

Leverage \» Xi[ 81+ (XT%Y'X; X:Bz] Check LNp.5-9

H,; (Note 1. Var( e)=(1-h )0’2 Note 2. £, 1s known before observmg Y)

(xt 3‘) X; whose h; is large = V&R& ) small & fitted model has to force to fit close to Vi q]

z% ¢ |x; whose h is small = var(€,) large = in this x;, model cannot fit so well $iGre
» h; roughly determines how close (x (x;, ;) to the regression surface (i.e., (x;, Vi)

* leverage: /. =

? not
» observations with large A/'s should be paid more attentzon (Q A OMX )a—J ¥ o _z:&l
same size % l ¥ S
dnsf:urbancoef A;-;;;;?:"'” m,:{@zé pss - i =T Q Why .EE Wlth
T e s large leverage
T LN has stronger
o :~.-.:" X '.' ‘?
Gl ¢ with small lever x,, m{'hl arge levemg y influence on fit?

» for linear model Wlth an mtercept 1ts ﬁtted model must pass the pomt X,
P ‘:(x. Xa,
E(y) Bo + Z Bi i (ﬂo + Z m) + Z Bi(w; — %@ Z Bilws 50 T
g i=1 /. i=1 i=1 = %
Fo = E R LV ¢ fjﬂo]
Y 4 =5 > E@i=g+ S i — 7) Q: why is it called leverage?

also, check LNp3-% ing ea

@, some facts about leverage: x = [ Xu - Xp-t i =[x 2pi] X" =[X-&] e Xpr-Bpul ] 70
1-@:;9 h; corresponds to a Mahalanobis distance defined by & (X without intercept),
—arl

length *
%if;% actually,AHth;w(x')‘t;);'ﬂ..h = Un+ [1/(n-D] (x- _)TE (;L’- —)] x'=(1: x*]

T T X' x .
Pecall | Where X', is the estimated covariance of & APy [2 Z*_*]

~ +h row}— A
o dmdic] = "extreme" X has large leverage L("")Z;= ¥* .i* inx*| TXa
ﬁ"““’; = a little change of y; value on point with large T
LN:‘)'-Z. leverage will change the fit a lot [;ar@‘Z(( "'f:)" z0

n —' (3 a =H

— 2 i F ?g;lp;a{lm;rls/{ln g i A% ZHG =) _ %
=sumo§ . . - = [why L2
aisen- | (Q: what 2’s are too large? Note: an average leverage is p/n X feﬂm
o“?",‘_,‘s = large leverage >>p/n = "rule of thumb": if 4, > 2p/n, look closer)

> var(y) = VargH Y)= 502 = var(p,) = h.0? *Recall C.1. 05 prediction (LNo.5-U~5 )
YH

* (internally) Studentzzed residuals r,’s: usually different: (When Ca" 'H'e)'
Var(€)| because W _gg) (1- h§02 let .= &, /[(1- )1/2 ],

identical?)
- dzr m.uLI‘ES( ual

cor(r T t 1
then var(r,) = (if model assumptions are correct) =0 al Aisndl - £ilarge

» non-constant Variance removed » dependence ¢ is very small in practice
» sum of r;’s is not zero (B X €i=0) > r,is slightly correlated with J; .
» studentized residuals are preferred in res1dual plots ( €15 and cov(€, ?)"Q

> if there is some underlying heteroscedasticity (i.e., violation of var(&=0?[) in the
errors, studentization cannot correct it

% Reading: Faraway (2005, 1%t ed.), 4.2.1

% Further reading: D&S, 8.1 B
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s (check WNp.7-1) unusual observations == Qutlier*><ould carry {Qgﬁf'i'_ﬂj-infomaﬁon p. 74
« an outlier is a point that does not fit the current model (Q: possible cause?

= usually, large residual (Q: why 7" ?Ng.g | E;V”i t underlying
. Ok : . “ Systems, eg.
Q: 1s there a problem if (raw or studentized) o Ea
residuals are used to detect outliers? Y=XB+E
Y Few d
= outliers may affect the fit (see plot)e k] yYaxg+g! |

$— cross- validated . leave -one-out ) A A2
« idea: exclude i observation and re-compute the estimates to get S, and 0w ,

where (i) denotes that the i case has been excluded. Then, *.~'Bw & & act influenced

) _n N T T _ by the (th observation
_rcons1der Y=Y, ,where V,~x: B .(Q: why is it better in detecting outliers?
— PN -~ — —_—
Xp+&iv .~ 2iBw check LNp.4-4.

var(V,~Y,) 3 0*(1+x,/(X,;"X;)'x,) (Hint. prediction of future observation
L(".,C‘gg)canberegarded as a future obs. For the f;
* jackknife (or externally studentized, or crossvalidated) residuals devgbp;i Mﬁﬁggt
t bias correction A _ A us: 3
aull distribubion 1~ Vi ™ Vo) [(HX1(X "X ) ") 200 | obsShvation
which are distributed as’# ,_;_, under null, if model is correct and £~ N(0,&1)

ith obs excluded~ ¥ . A : Hf,':’: ith obs. not an outlier
* a simpler way to calculate ¢, (avoid doing n regression) HS . ith obs. IS an oublier

C=,121“"Jnl/

row resdual 4i-82 74 "8 (1= )2 G0, = 1y (- p- DY D)

. LSV AR
« test for outliers externally ¥ - lt[?ehgjﬁ'fed]‘)—z-s;w [x“’x‘"] =(X'X)

I : internally ~—> o LR B N |
> given a specific case 7, conclude an outlier if ¢ > ¢, , (@2 test | (X% IZ‘ i‘ x x)::)
- =

€ > in practice, a few (or all) ¢/s will be tested = problem of multiple testingm LNy §-16
need to adjust the significance level of the test accordingly o¢ = p(YRR:|Ho)= ot*
Borerron: o0\ HE union-inbersection Testp O Hy' ——, = FP(RRi|Ho)=ndk

correckion H : no outlier in the n observations against H,: at least one outlier
jrejectionregion JRR;  acceptance region AARRE
1- a”/= 1- Prob(Type I error| H) = Prob(all tests accept|H,)
[ YRRi RRq — 222

= 1- Prob( at least one rejected|H,) = 1- 2. Prob(test i rejects|H)) = 1- na

—T ‘o= o*< na, )

= conclude an outlier if |¢| > ¢, 1@%’) if not=0.08 (> 0=005n), then ®"g 008

= it's conservative, tends not to label points as outliers (especially when n large)

RR, RR2

* some problems about outliers:

> two or more outliers next to each other can hide each other (see an example in Lab)
~» change model T .
»|an outlier in one model may not be an outlier in another when the variables have

been changed or transformed = reinvestigate outliers when model changed

»>| the error distribution may not be Normal = larger residuals may be expected.
lorgen. Ls 24 heavy-tailed error like Cauchy.
» for large datasets, individual outliers are usually much less of a problem from the

8 viewpoint of fit. In this case, it's still worth identifying outliers if these types of
g; points are worth knowing about in the particular application. For large datasets,

we need only worry about clusters of outliers. - these few units/subjects may carry
3 y oy - diffecent a‘nformati:ﬁj;r phenormena
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* Q: What should be done if some observations are identified as outliers? p- 76

» check for a data entry error first «— data cleamrg .3 outlier , . Doutlier
» Examine the physical context (sometimes, outliers may have physical 51gn1ﬁcanc:l

exclude the point from the analysis use roﬁ%‘%’%ég%%‘g"s‘ion when
Tamde )= try to re-include later if model changed outliers cannot be identified as

detal, if exclude permanently, report [Eg2 %ata | mistakes or aberrations Sor hoavv-

model
» dangerous to exclude them in an automa?w manner <~ e.9. NASA 1985 . (tailed error
+ Reading: Faraway (2005, 1%t ed.), 4.2.2 ¢ Further reading: D&S, 8.1 distribution

[':::&?;]_Tlnﬂuential observation—" ¢ !

« Each observations have different influence/contribution to the ~Medium
fitted model. Our fitted model should not change too much (i.e., leverages
robust) just because of adding/dropping a specific observation. [mdtwdaa’ Patfeml::l

* influential point. one whose removal from data would cause large change in the fit.

mecluum.
resi uals

« an influential point may or may not be an outlier and may or may not have
large leverage but it will tend to have at least one of those two properties. .d-S

g mt «Ffluencea " 8" not influenced | B influenced

-t mfluenced 8 m;l; -nfluenced G influenced | QL: MM arc more
j ‘ v influential?
I } € : i i

Q,: what information should
| a—0—> be included in the detection

; ﬁ}‘gﬂ‘ireverage - high ifluence of influential points®

» outlier » » not outlier
» low leverage > high leverage m

| —

B

v

€. measures of influence (Q: how to numerically characterize “large change in fit”?) * ™’

oross-| 31 change in coefﬁc1ents how large is large? -’!?!—

walidaf 7| "5 pob, (Qhowlpeislgello8Se o o have

tion change in fit: Y Y(Z) (Q: how large is large?) ibs and scale
» Cook’s statistics/distances (scale and unit free): We may use physica cf
Note Ter(B)= (XCXY'S™ D, = (5, "XTX)(% 4. )/ (p6”) %ﬁ W”‘“’“"f’s
Why? " B have = (Y = V)T (V = Vi) [ (p6°) _ Pysisally significan
C | defferent units | esidualy = (1/p) 12 (h)(I- ) [ leverage @ (B -BaV/ BV~ Ya/ ¥
Makhalanobis distance P¢’~"‘«"‘w“l ( % (Ll—( l)')"r :thag @Weﬁ"/&@.“?_ﬁ

= it's a combination of residual and leverage. (Q: what are the effects of
Gi-1 ) residual and leverage on Cook’s statlstlcV)d hkei! i(l ( UVPS'. ), null: F-dist. .
:Z;gﬁ: J .:ig : how large is large? If assume X is multivariate Normal, can do a test on D, .
However, normality may not be a reasonable assumption in practice.
» Others: DFFITS, Atkinson’s modified Cook’s statistics

* suggestion for identifying influential pomts use relatlvely large D; as an indication

of a possible problem, then examine their /)’ -p and/or Y — Y(l) X
% Reading: Faraway (20%'5 uer};: ed), 423 < Further reading: D&S, 8.3, 8.4 |Jx ~N(Il£,6§)
btfar to (1) et ¢ whliers§ infienial obs .. Residual plots (Cxerlixdq  plOges )

* residual plots: plot residuals (or absolute values of residuals) against (1) y, (i1) x, (for
predictors in model and not in model), (iii) combination (or transformation) of x,’s,
(iv) time order (if available), (v) any other quantities relevant to residuals )

(Q: why draw residual plots?3—~ check @® in LNp.7-2
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* in residual plots,

p. 7-8
cf.

» find overall patterns from the shape of a/l points (cf., residuals used in

checking outliers or influential points = identifying individually unusual point

check assumptions: (i) non-constant variance; (ii) incorrectly specified | 9-Similar

mean structure (i.e., E(Y)=X)¢ too simple (lack of ft) L E:

» rather subjective

» a satisfactory residual plot (null plot)
» constant variance VY

> no curvature in the mean of residualsV P
Note: one satisfactory residual plot cannot guarantee the

to graphs
in WNp.7-6

~P bt Q
Q

H . . . .
<$. residual plots for other variables will be satisfactory

. J . . .
« some possible patterns in unsatisfactory residual plots:(altemative)

evidence of non-constant variance

curvature in the mean of residuals
= evidence of incorrectly specified
mean structure

evidence of non-constant variance and
incorrectly specified mean structure

> unfortunately, in real data set, it’s rare the pattern is so clear _
(Q: what will you conclude from the residual plot on the right?) —

» in models with many terms or models with complex non-linear
mean structure, cannot necessarily associate shapes in a residual |«

plot with a particular problem with the assumptions, e.g.,

E(Y)=|x,|/[2+(1.5+x,)?] with constant variance
fitted model: E(Y)=L+Bx +[yx,— approximate

* possible remedies for unsatisfactory residual plots

(Np7-2)

‘o

true model:

unsatisfactory plot residuals against ...

residual plot B X, time order
non-constant || 1. weighted least square | 1. weighted least square | weighted
variance 2. transform ye— | 2. transform y least square
curvature in difjerent 1. add extra term of x; add term of

mean structure

1. add extra term philoso-
2. transform y«— phy

2. transform y

time in model

<> Readlng F,4.1.1

E./ﬂ'lg

) h

L &

=X
» if not sure, plot absolute values of residuals against J, x,’s, time order

M —I,X

¢ Further reading: D&S, 2.5

[® (W 2)> Non-constant varianceeo¥eral

Ls charge current model.

— Y24

pattern

Bw:.s BGLSj

» when non-constant variance exists, Bos will be more variable than the best estimate
( B, unbiased but not BLUE) and 6 wrong (= test and C.I. inaccurate)
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