




p. 7-3 some facts about leverage: \blacktriangleright <u>*h*</u>_{*i*} corresponds to a <u>Mahalanobis distance</u> defined by $\underline{\mathcal{X}}(\underline{X} \text{ without intercept})$, $h_i = \underline{1/n} + [1/(n-1)] (\boldsymbol{\mathcal{X}}_i - \boldsymbol{\overline{\mathcal{X}}})^{\mathrm{T}} \boldsymbol{\widehat{\boldsymbol{\mathcal{L}}}}_{\boldsymbol{\mathcal{X}}}^{-1} (\boldsymbol{\mathcal{X}}_i - \boldsymbol{\overline{\mathcal{X}}}),$ actually, where $\underline{\hat{\Sigma}}_{x}$ is the <u>estimated covariance</u> of $\underline{\mathcal{X}}$ \Rightarrow "<u>extreme</u>" \mathcal{X}_i has <u>large leverage</u> \Rightarrow a little change of y_i value on point with large leverage will change the fit a lot \succ $\sum_{i=1}^{n} h_i = p$, and $1 \ge h_i \ge 1/n \quad \forall i$ (Q: what <u> h_i 's</u> are too large? <u>Note</u>: an average leverage is p/n \Rightarrow large leverage $\geq p/n \Rightarrow$ "rule of thumb": if $h_i \geq 2p/n$, look closer) \blacktriangleright var $(\hat{\mathbf{y}}) =$ var $(\mathbf{H}\mathbf{Y}) = \mathbf{H}\mathbf{\sigma}^2 \implies$ var $(\hat{y}_i) = h_i \mathbf{\sigma}^2$ • (*internally*) *studentized residuals* r_i 's: because $\operatorname{var}(\hat{\varepsilon}_i) = (1 - h_i) \sigma^2$, let $r_i = \hat{\varepsilon}_i / [(1 - h_i)^{1/2} \hat{\sigma}]$, then $var(r_i) \approx 1$ (if model assumptions are correct) non-constant variance removed dependence is very small in practice \blacktriangleright sum of r_i 's is not zero \succ r_i is slightly correlated with \hat{y}_i . studentized residuals are preferred in residual plots \triangleright if there is some underlying heteroscedasticity (i.e., violation of var($\boldsymbol{\varepsilon}$)= $\sigma^2 \boldsymbol{I}$) in the errors, studentization cannot correct it **♦ Reading**: Faraway (2005, 1st ed.), 4.2.1 ✤ Further reading: D&S, 8.1 made by S.-W. Cheng (NTHU, Taiwan) p. 7-4 Outlier • an outlier is a point that does not fit the current model (Q: possible cause?) \Rightarrow usually, large residual (**Q**: why?) • **O**: is there a problem if (raw studentized) residuals are used to detect outliers? \Rightarrow outliers may affect the fit (see plot) • **idea**: exclude i^{th} observation and re-compute the estimates to get $\hat{\beta}_{_{(i)}}$ and $\hat{\sigma}_{_{(i)}}^{^2}$, where (i) denotes that the i^{th} case has been excluded. Then, consider $\underline{\mathcal{Y}_i}^- \hat{\mathcal{Y}}_{(i)}$, where $\underline{\hat{\mathcal{Y}}_{(i)}}^- = \underline{x_i}^T \hat{\beta}_{(i)}$. (Q: why is it better in detecting outliers?) $\operatorname{var}(\mathcal{Y}_{i} - \hat{\mathcal{Y}}_{i}) = \sigma^{2}(1 + \mathbf{x}_{i}^{T}(\mathbf{X}_{i})^{T}\mathbf{X}_{i})^{-1}\mathbf{x}_{i}) \quad (\text{Hint. prediction of future observation})$ • *jackknife* (or *externally studentized*, or *crossvalidated*) *residuals* $t_i = (y_i - \hat{y}_{i}) / [(1 + x_i^T (X_{i})^T X_{i})^{-1} x_i)^{1/2} \hat{\sigma}_{i}]$ which are distributed as $\underline{t}_{(n-1)-p}$ under <u>null</u>, if model is <u>correct</u> and $\underline{\varepsilon} \sim N(\theta, \sigma^2 I)$ • a simpler way to calculate t_i (avoid doing *n* regression) $t_i = \hat{\varepsilon}_i / [(1-h_i)^{1/2} \hat{\sigma}_{(i)}] = r_i ((n-p-1)/(n-p-r_i^2))^{1/2}$ • test for outliers > given a specific case *i*, conclude an outlier if $|t_i| > t_{n-1-p}$

practical problems:

- □ if $\underline{y_i \leq 0}$, for some *i*, square root or log transformations fail \Rightarrow can do
- <u>transformation</u> on $\underline{y_i+d}$, where <u>d</u> is some small amount s.t. $\underline{y_i+d>0}$ for all <u>i</u>
- <u>transformation may make interpretation difficult</u>
- <u>example</u> of <u>transformations</u>

$sqrt(y_i)$	$\operatorname{var}(y_i) \propto \operatorname{E}(y_i)$	useful for count data from Poisson distribution
$\log(y_i)$	$\operatorname{var}(y_i) \propto [\operatorname{E}(y_i)]^2$	very common, good candidate if the range of is very broad
1/y _i	$\operatorname{var}(y_i) \propto [\mathrm{E}(y_i)]^4$	appropriate when responses are " <u>bunched</u> " <u>near zero</u> , but, in <u>markedly decreasing numbers</u> , <u>large responses</u> do <u>occur</u>
$\sin^{-1}(\operatorname{sqrt}(y_i))$)) $\operatorname{var}(y_i) \propto \operatorname{E}(y_i)(1 - \operatorname{E}(y_i))$	for binomial proportions

- A do nothing ⇒ because (i) Â_{OLS} is still unbiased, although not BLUE; (ii) tests and C.I. inaccurate, but bootstrap may be used to get more accurate results
- → use generalized linear model (e.g., Poisson/binomial $y \Rightarrow var(y_x)$: function of $E(y_x)$)

• formal test for non-constant variance

 \triangleright regressing absolute residuals on \hat{y} or x_k 's

NTHU STAT 5410, 2022, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwar

A data with replication ⇒ can estimate variances of distinct x_i 's and test their homogeneity (see D&S, 2.2)

→ data without replication \Rightarrow assign variance a model, test whether parameters in the model equal zero (see Weinberg (2005), 8.3.2)

<u>formal test</u> may be good at detecting a particular kind of non-constant variance (depending on the alternative hypothesis), but always do the residual plots

★ Reading: Faraway (2005, 1st ed.), 4.1.1
 ★ Further reading: D&S, 2.2, 13.6

Curvature in the mean of residuals

• <u>related</u> to the concept of <u>lack-of-fit</u> (tests for <u>lack-of-fit</u> can be <u>used</u> if <u>possible</u>), i.e., the <u>current model</u>, $E(Y) = \underline{X\beta}$, may need to be <u>modified</u> for *achieving* <u>better fitting</u>

• A simple test for curvature: test whether a plot of residuals versus a quantity \underline{U} (e.g., \hat{y} or x_k 's) is a null plot or has curvature

 \Rightarrow refit the original mean structure with an additional term U^2 added

 \Rightarrow <u>significant</u> <u>t-test</u> for <u>U</u>² suggests <u>curvature</u> (be aware of

collinearity between $\underline{U^2}$ and other terms in original mean structure)

Q: how to identify <u>why</u> the <u>non-linearity</u> happened?
 ▶ plot <u>residuals</u> against ŷ ⇒ can tell you <u>whether</u> some problems exist, but cannot tell you why

p. 7-12

Plot residuals against x₂'s or y against x₂'s ⇒ may tell you why this problem happened, but in multivariate regression there may exist correlation between predictors, then it's difficult to find why
added variable (partial regression) plots
• recall:
Y = X₁β₁ + X₂β₂ + ε = (X₁β₁ + HX₂β₂)+((I-H₁)X₂β₂ + ε)
1. regress Y on all predictors except x_k ⇒ get residuals
$$\hat{c}_{x_1}$$

• \hat{c}_{x_1} is part of Y not explained by all predictors except x_k
• \hat{c}_{x_1} is part of Y not explained by all predictors except x_k
• \hat{c}_{x_1} is part of Y not explained by all predictors except x_k
• \hat{c}_{x_1} is part of Y not explained by all predictors except x_k
• \hat{c}_{x_1} is part of X not explained by all predictors except x_k
• \hat{c}_{x_1} is part of Y not explained by all predictors except x_k
• \hat{c}_{x_1} is part of X not explained by all predictors except x_k
• \hat{c}_{x_1} is part of X_1 not explained by all predictors except x_k
• \hat{c}_{x_1} is part of x_1 not explained by all predictors except x_k
• \hat{c}_{x_1} is the single of a fitted line to the added variable plot is $\hat{\beta}_k$
and intercept=0 (the line passes (0, 0))
• a strong relationship between the plotted quantities
corresponds to a strong adjusted relationship between y and x_k
• can be used to check if new predictors should be included
> partial residual plots
• $y - \sum_{j \neq k} \hat{\beta}_j x_j = \hat{y} + \hat{e} - \sum_{j \neq k} \hat{\beta}_j x_j = \hat{e} + \hat{\beta}_j x_k$
MTHU STAT 5410 2022 Lecture Notee
made by S · W. Cheag (NTHU, Takean)
• remedies for curvature ⇒ adjust the mean structure, E(Y) = XB for better fitting
> many many modeling techniques in addition to linear regression can
be adopted (GLM, additive model, nonparametric regression, ACE,
AVAS, regression trees, regression spine, MARS)
> add more (polynomial or cross product) terms
• may identify required terms from residual plot, added variable
plot, or partial residual plot (polynomial model will be
introduced in further lectu

■ some	transfo	rmation	non-linear model	p. 7-
examples:	log(y)	log(x)	$E(y) = \alpha \prod x_i^{\beta j}$	
	log(y)	X	$E(y) = \alpha \exp(\Sigma \beta_j x_j)$	
	у	log(x)	$E(y) = \alpha + \Sigma \beta_j \log(x_j)$	
	1/y	1/x	$E(y) = 1/[\alpha + \Sigma (\beta_j / x_j)]$	
	1/y	X	$E(y) = 1/(\alpha + \Sigma \beta_j x_j)$	
	у	1/x	$E(y) = \alpha + \Sigma \beta_j (1/x_j)$	
 There exists 	numerical	method for	finding a suitable transformation	
to improve the	ne fit and/o	r <u>remedy</u> r	on-constant variance (e.g., Box-	
Cox transfor	mation, fut	<u>ure</u> lecture	s)	
Reading: F, 4.3, 7.2.4	Surthe	r reading: D	&S, 8.2	
Va	rious plo	ots and t	ests for diagnostics	
• <u>Q-Q</u> plot	#		8	
▶ Q: we often see	the stateme	ent " $z_1, z_2,$	$\frac{1}{1}$ are <u>i.i.d.</u> from a <u>cdf</u> <u>iate</u> distribution assumption	F
$\overline{F''}$, how to exam	ine if F is a	an appropr	iate distribution assumption	
for z.'s? (Hint: ex	amine the	similarity	otw <u>cdf</u> and <u>empirical cdf</u>)	
-			rmality assumption of ε	/
				636 640
(Note: tests and \underline{C}		-		0.0 0.0
1. <u>sort</u> the data			1000 -	
			ere $\underline{\Phi}$ is the <u>cdf</u> of <u>N(0, 1)</u>	. A start and a start and a start a sta
			ibuted, an approximately	
straight-line	relationsh		bserved (<u>null plot</u>)	-1 0 1 2
I.	NTHU S		022, Lecture Notes ng (NTHU, Taiwan)	
non nome-1:4		SVV. Unei	10 (NIFIU, Laiwan)	
non-normalit	v: long-tai			p. 7
		<u>l</u> , <u>short-tail</u>	, <u>asymmetric</u>	p. 7
□ worst ca	se is long-1	l, <u>short-tail</u> tail; <u>mild n</u>	, <u>asymmetric</u> on-normality	p. 7
□ worst ca can safe	se is <u>long-</u> ly be <u>ignor</u>	<u>l, short-tail</u> tail; <u>mild n</u> ed; the <u>larg</u>	, <u>asymmetric</u> on-normality ger the <u>sample</u>	o construction of the second
□ worst ca can safel <u>size</u> , the	se is <u>long-1</u> ly be <u>ignor</u> less troubl	l, <u>short-tail</u> tail; <u>mild n</u> ed; the <u>larg</u> esome the	, <u>asymmetric</u> on-normality ger the <u>sample</u> non-normality	p. 7
□ worst ca can safel <u>size</u> , the □ for <u>long</u> -	se is <u>long-1</u> ly be <u>ignor</u> less troubl tail, (i) use	l, <u>short-tail</u> tail; <u>mild n</u> ed; the <u>larg</u> esome the e <u>test</u> based	, <u>asymmetric</u> on-normality ger the <u>sample</u> non-normality on <u>other distributions</u> , or	o construction of the second
 worst ca can safe size, the for long- bootstrap 	se is <u>long-1</u> ly be <u>ignor</u> less troubl tail, (i) use o, or permu	l, short-tail tail; mild n ed; the larg esome the test based itation test	, <u>asymmetric</u> on-normality ger the <u>sample</u> non-normality on <u>other distributions</u> , or <u>s</u> (ii) for <u>estimation</u> , use <u>robust</u>	o construction of the second
 worst ca can safe size, the for long- bootstrap 	se is <u>long-1</u> ly be <u>ignor</u> less troubl tail, (i) use o, or permu	l, short-tail tail; mild n ed; the larg esome the test based itation test	, <u>asymmetric</u> on-normality ger the <u>sample</u> non-normality on <u>other distributions</u> , or	null plot
 worst ca can safel size, the for long- bootstrap methods 	se is <u>long-1</u> ly be <u>ignor</u> less troubl tail, (i) use o, or permu (e.g., <u>least</u>	l, short-tail tail; mild n ed; the larg esome the test based itation test t absolute o	, <u>asymmetric</u> on-normality ger the <u>sample</u> non-normality on <u>other distributions</u> , or <u>s</u> (ii) for <u>estimation</u> , use <u>robust</u>	o occorrection and the property
 worst ca can safel size, the for long- bootstrap methods asymmethods 	se is long-t ly be ignor less troubl tail, (i) use o, or permu (e.g., <u>least</u> tric, transfe	$\frac{1}{2}, \frac{\text{short-tail}}{1}, \frac{\text{mild n}}{1}, \frac{1}{2}, \frac{1}{2},$, <u>asymmetric</u> on-normality ger the <u>sample</u> non-normality on <u>other distributions</u> , or s (ii) for <u>estimation</u> , use <u>robust</u> leviation instead of <u>least square</u>) , <u>Box-Cox method</u>)	null plot
 worst ca can safel size, the for long- bootstrap methods asymmetical short-tai 	se is long-t ly be ignor less troubl tail, (i) use o, or permu (e.g., least tric, transfe l can be rea	$\frac{1}{2}, \frac{\text{short-tail}}{1}, \frac{\text{mild n}}{1}, \frac{1}{2}, \frac{1}{2},$, <u>asymmetric</u> on-normality ger the <u>sample</u> non-normality on <u>other distributions</u> , or s (ii) for <u>estimation</u> , use <u>robust</u> leviation instead of <u>least square</u>) , <u>Box-Cox method</u>) mored	null plot
 worst ca can safel size, the for long- bootstrag methods asymmetical short-tai formal tests eterminetical 	se is long-t ly be ignor less troubl tail, (i) use o, or permu (e.g., least tric, transfe l can be rea	$\frac{1}{2}, \frac{\text{short-tail}}{\text{tail}; \frac{\text{mild n}}{\text{ed}; \text{the } \frac{1}{\text{larged}}}$ $\frac{\text{ed}; \text{the } \frac{1}{\text{larged}}}{\text{the } \frac{1}{\text{some}} \text{the } \frac{1}{\text{tail}}$ $\frac{1}{2} \frac{1}{2} $, <u>asymmetric</u> on-normality ger the <u>sample</u> non-normality on <u>other distributions</u> , or s (ii) for <u>estimation</u> , use <u>robust</u> leviation instead of <u>least square</u>) , <u>Box-Cox method</u>) gorov-Smirnov	null plot
 worst ca can safel size, the for long- bootstrap bootstrap methods asymme short-tai formal tests e test), but not 	se is <u>long-1</u> ly be <u>ignor</u> <u>less troubl</u> <u>tail</u> , (i) use b, or <u>permu</u> (e.g., <u>least</u> tric, transfe can be rea exists (such as <u>flexible</u>	$\frac{1}{2}, \frac{\text{short-tail}}{\text{mild n}}$ $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$, <u>asymmetric</u> on-normality ger the <u>sample</u> non-normality on <u>other distributions</u> , or s (ii) for <u>estimation</u> , use <u>robust</u> leviation instead of <u>least square</u>) , <u>Box-Cox method</u>) mored gorov-Smirnov <u>plot</u> asymmetric	null plot
 □ worst ca can safel size, the □ for long- bootstrap methods □ asymme □ short-tai □ formal tests e test), but not 	se is long-t by be ignor less troubl tail, (i) use o, or permu (e.g., least tric, transfe l can be rea exists (such as <u>flexible</u> be applied t	$\frac{1}{2}, \frac{\text{short-tail}}{\text{mild n}}$ $\frac{\text{tail}}{\text{ed}}; \text{ the } \frac{\text{larg}}{\text{ed}}$ $\frac{\text{esome}}{\text{the }} \text{ the}$ $\frac{\text{test}}{\text{based}} \text{ the}$ $\frac{\text{test}}{\text{based}} \text{test}$ $\frac{\text{tation } \text{test}}{\text{tabsolute } \text{c}}$ $\frac{\text{orm } Y}{\text{(e.g. asonably } \frac{19}{19})}$ $\frac{\text{as } \text{Kolmo}}{\text{as } \text{the } \frac{Q-Q}{10}}$ $\frac{\text{test}}{\text{test}} \text{test}$, <u>asymmetric</u> on-normality ger the <u>sample</u> non-normality on <u>other distributions</u> , or s (ii) for <u>estimation</u> , use <u>robust</u> leviation instead of <u>least square</u>) , <u>Box-Cox method</u>) gorov-Smirnov <u>plot</u> extreme values (e.g., in <u>residuals</u> ,	null plot
 □ worst ca can safel size, the □ for long- bootstrap methods □ asymme □ short-tai □ formal tests e test), but not > normal plot can b leverages, Cook's 	se is long-t ly be ignor less troubl tail, (i) use o, or permu (e.g., least tric, transfe l can be rea exists (such as flexible be applied t	$\frac{1}{2}, \frac{\text{short-tail}}{\text{mild n}}$ $\frac{\text{tail}}{\text{ed}}; \text{ the } \frac{\text{larg}}{\text{ed}};$ $\frac{\text{ed}}{\text{the } \frac{\text{larg}}{\text{ed}}};$ $\frac{\text{the } \frac{\text{larg}}{\text{ed}}}{\text{the } \frac{\text{larg}}{\text{the } \frac{\text{larg}}{\text{ed}}};$ $\frac{\text{the } \frac{\text{larg}}{\text{the } \frac{1}{\text{the } \frac{1}{$, <u>asymmetric</u> on-normality ger the <u>sample</u> <u>non-normality</u> on <u>other distributions</u> , or s (ii) for <u>estimation</u> , use <u>robust</u> leviation instead of <u>least square</u>) , <u>Box-Cox method</u>) <u>gorov-Smirnov</u> <u>o plot</u> <u>asymmetric</u> <u>extreme values</u> (e.g., in <u>residuals</u> , case, <u>not interested</u> in a <u>straight li</u>	null plot long tail short tail
 worst ca can safel size, the for long- bootstray methods asymmethods asymmethods short-tai formal tests of test), but not normal plot can be leverages, Cook's relationship, but to 	se is long-t ly be ignor less troubl tail, (i) use o, or permu (e.g., least tric, transfe l can be rea exists (such as flexible be applied t	$\frac{1}{2}, \frac{\text{short-tail}}{\text{mild n}}$ $\frac{\text{tail}}{\text{ed}}; \text{ the } \frac{\text{larg}}{\text{ed}};$ $\frac{\text{ed}}{\text{the } \frac{\text{larg}}{\text{ed}}};$ $\frac{\text{the } \frac{\text{larg}}{\text{ed}}}{\text{the } \frac{\text{larg}}{\text{the } \frac{\text{larg}}{\text{ed}}};$ $\frac{\text{the } \frac{\text{larg}}{\text{the } \frac{1}{\text{the } \frac{1}{$, <u>asymmetric</u> on-normality ger the <u>sample</u> non-normality on <u>other distributions</u> , or s (ii) for <u>estimation</u> , use <u>robust</u> leviation instead of <u>least square</u>) , <u>Box-Cox method</u>) gorov-Smirnov <u>plot</u> extreme values (e.g., in <u>residuals</u> ,	null plot long tail short tail
 worst ca can safel size, the for long- bootstrap methods asymme short-tai formal tests e test), but not normal plot can b leverages, Cook's relationship, but not 	se is long-1 ly be ignor less troubl tail, (i) use o, or permu (e.g., least tric, transfe l can be rea exists (such as <u>flexible</u> be applied to s statistics, rather look	$\frac{1}{2}, \frac{\text{short-tail}}{\text{mild n}}$ $\frac{1}{\text{ed}}; \frac{\text{mild n}}{\text{the larged}}$ $\frac{1}{\text{ed}}; \frac{1}{\text{the larged}}$ $\frac{1}{\text{the larged}}$ $\frac{1}{\text{ed}}; \frac{1}{\text{the larged}}$ $\frac{1}{\text{the larged}}$ $\frac{1}{the large$, <u>asymmetric</u> on-normality ger the <u>sample</u> non-normality on <u>other distributions</u> , or s (ii) for <u>estimation</u> , use <u>robust</u> leviation instead of <u>least square</u>) , <u>Box-Cox method</u>) gorov-Smirnov <u>o plot</u> <u>asymmetric</u> extreme values (e.g., in <u>residuals</u> , case, <u>not interested</u> in a <u>straight lin</u> <u>that depart from the straight lin</u>	null plot long tail short tail
 worst ca can safel size, the for long- bootstrap methods asymme short-tai formal tests e test), but not normal plot can be leverages, Cook's relationship, but not half-normal plot sort the absorb 	se is long-t ly be ignor less troubl tail, (i) use b, or permu (e.g., least tric, transfe l can be real exists (such as <u>flexible</u> be applied t s statistics, rather look	$\frac{1}{\hat{\varepsilon}}, \frac{\text{short-tail}}{\text{mild n}}$ $\frac{1}{\text{ed}}; \frac{\text{mild n}}{\text{ed}}; \frac{1}{\text{mild n}}$ $\frac{1}{\text{ed}}; \frac{1}{\text{the largest statements}}$ $\frac{1}{\text{esome the etest baseds}}$ $\frac{1}{\text{tation test statements}}$, <u>asymmetric</u> on-normality ger the <u>sample</u> non-normality on <u>other distributions</u> , or s (ii) for <u>estimation</u> , use <u>robust</u> leviation instead of <u>least square</u>) , <u>Box-Cox method</u>) gorov-Smirnov <u>plot</u> extreme values (e.g., in <u>residuals</u> , case, <u>not interested</u> in a <u>straight lin</u> that <u>depart from the straight lin</u> $\leq \hat{\mathcal{E}} _{(n)}$	null plot of the second
 worst ca can safel size, the for long- bootstrap methods asymme short-tai formal tests e test), but not normal plot can b leverages, Cook's relationship, but not 	se is long-t ly be ignor less troubl tail, (i) use b, or permu (e.g., least tric, transfe l can be real exists (such as <u>flexible</u> be applied t s statistics, rather look	$\frac{1}{\hat{\varepsilon}}, \frac{\text{short-tail}}{\text{mild n}}$ $\frac{1}{\text{ed}}; \frac{\text{mild n}}{\text{ed}}; \frac{1}{\text{mild n}}$ $\frac{1}{\text{ed}}; \frac{1}{\text{the largest statements}}$ $\frac{1}{\text{esome the etest baseds}}$ $\frac{1}{\text{tation test statements}}$, <u>asymmetric</u> on-normality ger the <u>sample</u> non-normality on <u>other distributions</u> , or s (ii) for <u>estimation</u> , use <u>robust</u> leviation instead of <u>least square</u>) , <u>Box-Cox method</u>) gorov-Smirnov <u>plot</u> extreme values (e.g., in <u>residuals</u> , case, <u>not interested</u> in a <u>straight lin</u> that <u>depart from the straight lin</u> $\leq \hat{\mathcal{E}} _{(n)}$	null plot long tail short tail
 worst ca can safel size, the for long- bootstrap methods asymme short-tai formal tests e test), but not normal plot can be leverages, Cook's relationship, but not half-normal plot sort the absorb 	se is long-t ly be ignor less troubl tail, (i) use b, or permu (e.g., least tric, transfe can be real exists (such as <u>flexible</u> be applied t s statistics, rather look	$\frac{1}{2}, \frac{\text{short-tail}}{\text{mild n}}$ $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$, <u>asymmetric</u> on-normality <u>ser</u> the <u>sample</u> <u>non-normality</u> on <u>other distributions</u> , or <u>s</u> (ii) for <u>estimation</u> , use <u>robust</u> <u>leviation</u> instead of <u>least square</u>) , <u>Box-Cox method</u>) <u>gorov-Smirnov</u> <u>oplot</u> <u>asymmetric</u> <u>extreme values</u> (e.g., in <u>residuals</u> , case, <u>not interested</u> in a <u>straight lin</u> <u>ints that depart from the straight lin</u> $\leq \hat{\mathcal{E}} _{(n)}$	null plot of the short tail
□ worst ca can safel size, the □ for long- bootstrap methods □ asymme □ short-tai ■ formal tests of test), but not > normal plot can be leverages, Cook's relationship, but for 1. sort the abso 2. plot $ \hat{\mathcal{E}} _{(i)}$ aga	se is long-1 ly be ignor less troubl tail, (i) use p, or permu (e.g., least tric, transfe l can be read exists (such as <u>flexible</u> be applied to s statistics, rather look <u>lute</u> data inst $\Phi^{-1}((n + 1))$	$\frac{1}{4}, \frac{\text{short-tail}}{\text{short-tail}}$ $\frac{1}{4}, \frac{1}{1}, 1$, <u>asymmetric</u> on-normality ger the <u>sample</u> non-normality on <u>other distributions</u> , or s (ii) for <u>estimation</u> , use <u>robust</u> leviation instead of <u>least square</u>) , <u>Box-Cox method</u>) gorov-Smirnov <u>plot</u> extreme values (e.g., in <u>residuals</u> , case, <u>not interested</u> in a <u>straight lin</u> that <u>depart from the straight lin</u> $\leq \hat{\mathcal{E}} _{(n)}$	null plot output and the second seco
□ worst ca can safel size, the □ for long- bootstrap methods □ asymme □ short-tai ■ formal tests of test), but not > normal plot can be leverages, Cook's relationship, but f • half-normal plot 1. sort the abso 2. plot $ \hat{\mathcal{E}} _{(i)}$ aga > usually used to id	se is long-1 ly be ignor less troubl tail, (i) use p, or permu (e.g., least tric, transfe l can be read exists (such as flexible be applied to s statistics, rather look lute data inst $\Phi^{-1}((n + 1))$	$\frac{1}{4}, \frac{\text{short-tail}}{\text{short-tail}}$ $\frac{1}{4}, \frac{1}{1}, 1$, <u>asymmetric</u> on-normality ger the <u>sample</u> non-normality on <u>other distributions</u> , or s (ii) for <u>estimation</u> , use <u>robust</u> leviation instead of least square) , <u>Box-Cox method</u>) gorov-Smirnov <u>plot</u> extreme values (e.g., in <u>residuals</u> , case, <u>not interested</u> in a <u>straight lin</u> that <u>depart from the <u>straight lin</u> $\leq \hat{\mathcal{E}} _{(n)}$</u>	null plot of the second

• diagnostic of correlat	ed errors when a time order is available	p. 7-1
> plot $\hat{\varepsilon}$ against ti		
r <u> </u>	$\hat{\varepsilon}_i$, when <i>i</i> related to time	
	like the Durbin-Watson or runs test	
$DW = \sum$	$\frac{\sum_{i=2}^{n} \left(\hat{\epsilon}_{i} - \hat{\epsilon}_{i-1}\right)^{2}}{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}$	
• $0 \le DW \le 4$	4	
positively	correlated $\Rightarrow DW \rightarrow 0$	
 negatively 	$\overrightarrow{\text{correlated}} \Rightarrow DW \rightarrow 4$	
	$\overline{(\text{i.e., correlation}=0)} \Rightarrow DW \approx 2$	
	ution depends on X	
	ou have correlated errors	
♦ Reading : F, 4.1.2, 4.1.3	Further reading: D&S, 2.4, 2.7, chapter 7	
	NTHU STAT 5410, 2022, Lecture Notes	
	made by SW. Cheng (NTHU, Taiwan)	