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• recall (residuals)

 prediction:      = X(XT X)- 1XTY = HY, H: hat matrix

 residuals:       =Y - = (I- H)Y = (I- H)Xβ + (I- H)ε = (I- H)ε
(Note: errors and  residuals are different. Q: what difference?)

 var(    ) = var((I- H)ε) = (I- H)2σ2 = (I- H)σ2

 even though ε is uncorrelated and equal variance,     may be not

(Note: H depends on X only) 

Ŷ

Diagnostics

Residual

• regression diagnostics: check model assumptions to suggest further improvement

after fitting. The building of an empirical model is an iterative process. During the 

process, it is required to check whether the current fitted model is consistent with data. 

• Q: what assumptions needed to be checked? 

model: Y=Xβ +ε, ε ∼ N(0, σ2Ι )

 error structure: errors independent, equal variance, normally distributed

 mean structure: whether E(Y)=Xβ is a correct structure

 unusual observations: whether some observations do not fit the model

• two types of diagnostic techniques: numerical and graphical

Ŷ
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εiˆ
εiˆ
εiˆ

 for linear model with an intercept, its fitted model must pass the point (   ,    )yx

ε̂Ŷ

 residuals are useful for detecting lack of fit and checking model assumptions

(Q: Why residuals can do the works?

Y = Xβ  + ε  =     + 

Y = X1β1 + X2β2 + ε = (X1β1 + Η1X2β2 )+((I−H1)X2β2 + ε ) =        +       ) 
X

ε
1

ˆ
X

Y
1

ˆ

Leverage

• leverage: hi ≡Hii (Note 1. var(    )=(1- hi)σ2. Note 2. hi is known before observing Y)

xi whose hi is large  var(    ) small  fitted model has to force to fit close to yi

xi whose hi is small  var(    ) large  in this xi, model cannot fit so well

 hi roughly determines how close (xi , yi) to the regression surface (i.e., (xi , yi))

 observations with large hi's should be paid more attention. (Q: why?)

Q: why xi with 

large leverage

has stronger 

influence on fit?

Q: why is it called leverage?
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• some facts about leverage:

 hi corresponds to a Mahalanobis distance defined by X (X without intercept), 

actually, Σ̂ x

1−
x

Σ̂x

x

 "extreme" xi has large leverage

 a little change of yi value on point with large 

leverage will change the fit a lot

y
i

ˆ

• (internally) studentized residuals ri’s:

because var(    )=(1- hi)σ2,    let ri =      / [(1- hi)
1/2 ],

then var(ri) ≈ 1 (if model assumptions are correct)

 non-constant variance removed

 sum of ri’s is not zero

 studentized residuals are preferred in residual plots

 if there is some underlying heteroscedasticity (i.e., violation of var(ε)=σ2I) in the 

errors, studentization cannot correct it

εiˆ εiˆ σ̂

y
i

ˆ

 var(   ) = var(HY) = Hσ2  var(   ) = hiσ2

 dependence is very small in practice

 ri is slightly correlated with .

Ŷ

hi = 1/n + [1/(n−1)] (xi- )T (xi- ),

where is the estimated covariance of X

 Σ hi = p, , and 1 ≥ hi ≥ 1/n ∀ i

(Q: what hi’s are too large? Note: an average leverage is p/n

 large leverage >> p/n  "rule of thumb": if hi > 2p/n,  look closer)

 Reading: Faraway (2005, 1st ed.), 4.2.1  Further reading: D&S, 8.1
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• an outlier is a point that does not fit the current model (Q: possible cause?)

 usually, large residual (Q: why?)

• Q: is there a problem if (raw studentized)

residuals are used to detect outliers? 

 outliers may affect the fit (see plot)

• idea: exclude ith observation and re-compute the estimates to get and      , 

where (i) denotes that the ith case has been excluded. Then, 

consider , where . (Q: why is it better in detecting outliers?)

var(           ) = σ2(1+xi
T(X(i)

TX(i))
−1xi)    (Hint. prediction of future observation)

• jackknife (or externally studentized, or crossvalidated) residuals

ti = (           )/ [(1+xi
T(X(i)

TX(i))
−1xi)

1/2 ]

which are distributed as t(n-1)-p under null, if model is correct and ε ~ N(0,σ2I)
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• a simpler way to calculate ti (avoid doing n regression)

ti =     /[(1- hi)
1/2 ]  = ri ((n- p-1)/(n- p- ri

2))1/2

Outlier

σ (i)ˆεiˆ
• test for outliers

 given a specific case i, conclude an outlier if |ti| > tn-1-p
(α/2)
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• some problems about outliers:

 two or more outliers next to each other can hide each other

 an outlier in one model may not be an outlier in another when the variables have 

been changed or transformed  reinvestigate outliers when model changed

 the error distribution may not be Normal  larger residuals may be expected.

 for large datasets, individual outliers are usually much less of a problem from the 

viewpoint of fit. In this case, it's still worth identifying outliers if these types of 

points are worth knowing about in the particular application. For large datasets, 

we need only worry about clusters of outliers.

H0: no outlier in the n observations against H1: at least one outlier 

1- α∗ = 1- Prob(Type I error |H0) = Prob(all tests accept |H0) 

= 1- Prob( at least one rejected|H0) ≥ 1- Σi Prob(test i rejects |H0)  = 1-nα

 conclude an outlier if |ti| > tn-p-1
(α/2n)

 it's conservative, tends not to label points as outliers (especially when n large)

 in practice, a few (or all) ti's will be tested  problem of multiple testing:

need to adjust the significance level of the test accordingly 

p. 7-6

 not outlier
 high leverage

 outlier
 low leverage

 outlier
 high leverage  high influence

• Q: What should be done if some observations are identified as outliers?

 check for a data entry error first

 Examine the physical context (sometimes, outliers may have physical significance)

 exclude the point from the analysis

 try to re-include later if model changed

 if exclude permanently, report

 dangerous to exclude them in an automatic manner

 Reading: Faraway (2005, 1st ed.), 4.2.2  Further reading: D&S, 8.1

 use robust regression when 

outliers cannot be identified as 

mistakes or aberrations

• an influential point may or may not be an outlier and may or may not have 

large leverage but it will tend to have at least one of those two properties.

Influential observation

Q1: what points are more 

influential?

Q2: what information should 

be included in the detection

of influential points? 

• Each observations have different influence/contribution to the 

fitted model. Our fitted model should not change too much (i.e., 

robust) just because of adding/dropping a specific observation.

• influential point: one whose removal from data would cause large change in the fit.



p. 7-7• measures of influence (Q: how to numerically characterize “large change in fit”?)

 change in coefficients: 

 change in fit:

ββ ˆˆ
(i)

−

 Cook’s statistics/distances (scale and unit free): 

Di = (          )T(XTX)(          )/ (p )

= (              )T (              ) / (p )

= (1/p) ri
2 (hi/(1- hi))

 it's a combination of residual and leverage. (Q: what are the effects of 

residual and leverage on Cook’s statistic?)

 Q: how large is large? If assume X is multivariate Normal, can do a test on Di . 

However, normality may not be a reasonable assumption in practice.

 Others: DFFITS, Atkinson’s modified Cook’s statistics

• suggestion for identifying influential points: use relatively large Di as an indication

of a possible problem, then examine their           and/or                . 

ββ ˆˆ
(i)

− ββ ˆˆ
(i)

− σ̂
2
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2

ββ ˆˆ
(i)

−

• residual plots: plot residuals (or absolute values of residuals) against (i)    , (ii) xk (for 

predictors in model and not in model), (iii) combination (or transformation) of xk’s, 

(iv) time order (if available), (v) any other quantities relevant to residuals 

(Q: why draw residual plots?) 

ŷ

 Reading: Faraway (2005, 1st ed.), 4.2.3  Further reading: D&S, 8.3, 8.4

Residual plots

(Q: how large is large?)

(Q: how large is large?)
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• in residual plots, 

 find overall patterns from the shape of all points (cf., residuals used in 

checking outliers or influential points  identifying individually unusual point)

• a satisfactory residual plot (null plot)

 constant variance

 no curvature in the mean of residuals

Note: one satisfactory residual plot cannot guarantee the 

residual plots for other variables will be satisfactory

• some possible patterns in unsatisfactory residual plots:

evidence of non-constant variance

curvature in the mean of residuals

 evidence of incorrectly specified 

mean structure

evidence of non-constant variance and 

incorrectly specified mean structure

 check assumptions: (i) non-constant variance; (ii) incorrectly specified 

mean structure (i.e., E(Y)=Xβ)

 rather subjective
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 unfortunately, in real data set, it’s rare the pattern is so clear

(Q: what will you conclude from the residual plot on the right?)

unsatisfactory

residual plot

plot residuals against ...

xk time order

non-constant 

variance

1. weighted least square

2. transform y

1. weighted least square

2. transform y

weighted 

least square

curvature in 

mean structure

1. add extra term

2. transform y

1. add extra term of xk

2. transform y

add term of 

time in model

ŷ

• possible remedies for unsatisfactory residual plots

• if not sure, plot absolute values of residuals against , xk’s, time order 

• when non-constant variance exists, will be more variable than the best estimates

( unbiased but not BLUE) and wrong ( test and C.I. inaccurate)

ŷ

σ̂

 Reading: F, 4.1.1  Further reading: D&S, 2.5

β̂
OLS

β̂
OLS

Non-constant variance

 in models with many terms or models with complex non-linear

mean structure, cannot necessarily associate shapes in a residual 

plot with a particular problem with the assumptions, e.g.,

true model:    E(Y)=|x1|/[2+(1.5+x2)
2] with constant variance

fitted model:  E(Y)=β0+β1x1+β2x2
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• remedies for non-constant variance

 weighted least squares

 need weighting information (may from plotting residual vs. xk) or

 model the form of Σ and using IRWLS

 transform Y (may use information from plotting residual vs. ) 

 idea: find a transformation h such that var(h(yx)) is a constant, (Q: how? Hint: 

δ-method)

ŷ

h(yx)=h(E(y))+(y- E(y))h′(E(y))+...  var(h(y)) ≈ var(y)[h′(E(y))]2=c

hope var(h(y)) to be a constant c h′(E(yx)) ∝ 1/(var(yx))
1/2 

h(E(y)) ≡  1/(var(y))1/2 d(E(y))

 Example 1: var(yx)∝[E(yx)]
2  suggest h(y) = log(y)

 Example 2: var(yx)∝E(yx)  suggest h(y) = y1/2

 Note: in residual plot, tend to see [var(yx)]
1/2 rather than var(yx) (example?)

• It’s better try to understand the cause of non-constant variance before 

taking any remedies, e.g., (1) larger response have more “room” to vary, 

(2) response constrained to lie between a maximum and a minimum, 

(3) response from Poisson distribution or binomial distribution, … 

 discovering reasons to support the remedies you are going to take



p. 7-11
 practical problems: 

 if yi≤0, for some i, square root or log transformations fail  can do 

transformation on yi+d, where d is some small amount s.t. yi+d>0 for all i

 transformation may make interpretation difficult

sqrt(yi) var(yi) ∝ E(yi) useful for count data from Poisson distribution

log(yi) var(yi) ∝ [E(yi)]
2 very common, good candidate if the range of Y

is very broad

1/yi var(yi) ∝ [E(yi)]
4 appropriate when responses are 

“bunched” near zero, but, in 

markedly decreasing numbers, 

large responses do occur

sin- 1(sqrt(yi)) var(yi) ∝ E(yi)(1- E(yi)) for binomial proportions

 example of transformations

 do nothing  because (i) is still unbiased, although not BLUE; (ii) tests and 

C.I. inaccurate, but bootstrap may be used to get more accurate results

 use generalized linear model (e.g., Poisson/binomial y  var(yx): function of E(yx))

β̂
OLS

• formal test for non-constant variance

 regressing absolute residuals on or xk’sŷ
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 data without replication  assign variance a model, test whether 

parameters in the model equal zero (see Weinberg (2005), 8.3.2)

 Reading: Faraway (2005, 1st ed.), 4.1.1  Further reading: D&S, 2.2, 13.6

Curvature in the mean of residuals

 data with replication  can estimate variances of distinct xi’s

and test their homogeneity (see D&S, 2.2) 

 formal test may be good at detecting a particular kind of non-constant variance 

(depending on the alternative hypothesis), but always do the residual plots

• A simple test for curvature: test whether a plot of residuals versus a 

quantity U (e.g., or xk’s) is a null plot or has curvature

 refit the original mean structure with an additional term U2 added 

 significant t-test for U2 suggests curvature (be aware of 

collinearity between U2 and other terms in original mean structure)

ŷ

• related to the concept of lack-of-fit (tests for lack-of-fit can be used if possible), i.e., 

the current model, E(Y)=Xβ, may need to be modified for achieving better fitting

• Q: how to identify why the non-linearity happened?

 plot residuals against  can tell you whether

some problems exist, but cannot tell you why

ŷ
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 added variable (partial regression) plots 

 recall: 

Y = X1β1 + X2β2 + ε = (X1β1 + Η1X2β2 )+((I−H1)X2β2 + ε )

1. regress Y on all predictors except xk  get residuals

2. regress xk, on all predictors except xk  get residuals

 : part of Y not explained by all predictors except xk

 : part of xk not explained by all predictors except xk

3. plot versus .

)(ˆ xε kY

ε xk
ˆ

)(ˆ xε kY

ε xk
ˆ

)(ˆ xε kY ε xk
ˆ

 the slope of a fitted line to the added variable plot is .

and intercept=0 (the line passes (0, 0))

β̂
k

 plot residuals against xk’s or y against xk’s  may tell you why

this problem happened, but in multivariate regression there may 

exist correlation between predictors, then it’s difficult to find why

 a strong relationship between the plotted quantities

corresponds to a strong adjusted relationship between y and xk

 can be used to check if new predictors should be included

xβε kk
ˆˆ + xk

β
j

ˆ ŷ ε̂ β
k

ˆε̂β
j

ˆ

partial residual plots

 plot versus  same interpretation as added variable plots

 y – Σj≠k xj =      + - Σj≠k xj =      + xk
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many many modeling techniques in addition to linear regression can 

be adopted (GLM, additive model, nonparametric regression, ACE, 

AVAS, regression trees, regression spline, MARS)

add more (polynomial or cross product) terms

 may identify required terms from residual plot, added variable 

plot, or partial residual plot (polynomial model will be 

introduced in further lecture)

 transformation of response or predictors. idea behind the approach: 

(i) a statistical model is a local approximation of 

the underlying system

(ii) when the mean structure of the underlying system is non-

linear and complex, a linear approximation over a relatively 

wide range of X may be inadequate (e.g., 

E(Y) = β0 x1
β1 x2

β2)

(iii)we sometimes can find suitable transformations of data that 

will permit a non-linear model to be better approximated

(after transformation) by a linear one (e.g., 

E(log(Y)) ≈ log(β0)+β1 log(x1)+β2 log(x2))

• remedies for curvature  adjust the mean structure, E(Y)=Xβ, for better fitting
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 There exists numerical method for finding a suitable transformation

to improve the fit and/or remedy non-constant variance (e.g., Box-

Cox transformation, future lectures)

transformation non-linear model

log(y) log(x) E(y) = α ∏ xj
βj

log(y) x E(y) = α exp(Σβjxj)

y log(x) E(y) = α + Σ βj log(xj)

1/y 1/x E(y) = 1/[α + Σ (βj/xj)]

1/y x E(y) = 1/(α + Σ βjxj)

y 1/x E(y) = α + Σ βj (1/xj)

 some 

examples:

 Reading: F, 4.3, 7.2.4  Further reading: D&S, 8.2

• Q-Q plot 

 Q: we often see the statement “z1, z2, …, zm are i.i.d. from a cdf 

F”, how to examine if F is an appropriate distribution assumption 

for zi’s? (Hint: examine the similarity btw cdf and empirical cdf)

 normal (probability) plot: assessing normality assumption of ε
(Note: tests and C.I. depend on normality assumption) 

1. sort the data .

2. plot against Φ−1(i/(n+1)), where Φ is the cdf of N(0, 1)

 If the residuals are normally distributed, an approximately 

straight-line relationship will be observed (null plot)

Various plots and tests for diagnostics

εεε ˆˆˆ )()2()1( n
≤≤≤ L

ε̂ )( i
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 for long-tail, (i) use test based on other distributions, or 

bootstrap, or permutation tests (ii) for estimation, use robust 

methods (e.g., least absolute deviation instead of least square)

 asymmetric, transform Y (e.g., Box-Cox method)

 short-tail can be reasonably ignored

long tail

short tailasymmetric

null plot

 formal tests exists (such as Kolmogorov-Smirnov

test), but not as flexible as the Q-Q plot

• half-normal plot

1. sort the absolute data .

2. plot against Φ−1((n+i)/(2n+1))

 usually used to identify “extreme” values

 can be used to examine residuals, leverages, 

Cook’s statistics, treatment effects (especially 

for experimental data without replicates) 

|ˆ||ˆ||ˆ|
)()2()1(

εεε
n

≤≤≤ L

|ˆ|
)(

ε
i

 normal plot can be applied to identify extreme values (e.g., in residuals, 

leverages, Cook’s statistics, …): in the case, not interested in a straight line 

relationship, but rather looking for points that depart from the straight line

 non-normality: long-tail, short-tail, asymmetric

 worst case is long-tail; mild non-normality

can safely be ignored; the larger the sample 

size, the less troublesome the non-normality



p. 7-17
• diagnostic of correlated errors when a time order is available

 plot against time

 plot against , when i related to time

 use formal tests like the Durbin-Watson or runs test

 0 ≤ DW ≤ 4

 positively correlated  DW→0

 negatively correlated  DW→4

 under null (i.e., correlation=0)  DW≈2

 null distribution depends on X

 use GLS when you have correlated errors

ε̂

εiˆ 1+ εiˆ

 Reading: F, 4.1.2, 4.1.3  Further reading: D&S, 2.4, 2.7, chapter 7


